0000000000010429

AUTHOR

Pilar Rueda

0000-0003-4094-2003

On $p$-Dunford integrable functions with values in Banach spaces

[EN] Let (Omega, Sigma, mu) be a complete probability space, X a Banach space and 1 X. Special attention is paid to the compactness of the Dunford operator of f. We also study the p-Bochner integrability of the composition u o f: Omega->Y , where u is a p-summing operator from X to another Banach space Y . Finally, we also provide some tests of p-Dunford integrability by using w*-thick subsets of X¿.

research product

ISOMETRY GROUPS OF WEIGHTED SPACES OF HOLOMORPHIC FUNCTIONS: TRANSITIVITY AND UNIQUENESS

We survey some recent results on the isometries of weighted spaces of holomorphic functions defined on an open subset of ℂn. We will see that these isometries are determined by a subgroup of the automorphisms on a distinguished subset of the domain. We will look for weights with 'large' groups of isometries and observe that in certain circumstances the group of isometries determines the weight.

research product

On the size of the set of unbounded multilinear operators between Banach spaces

Among other results we investigate $\left( \alpha,\beta\right) $-lineability of the set of non-continuous $m$-linear operators defined between normed spaces as a subset of the space of all $m$-linear operators. We also give a partial answer to an open problem on the lineability of the set of non absolutely summing operators.

research product

Lipschitz operator ideals and the approximation property

[EN] We establish the basics of the theory of Lipschitz operator ideals with the aim of recovering several classes of Lipschitz maps related to absolute summability that have been introduced in the literature in the last years. As an application we extend the notion and main results on the approximation property for Banach spaces to the case of metric spaces. (C) 2015 Elsevier Inc. All rights reserved.

research product

Compactness and $s$-numbers for polynomials

research product

Closed injective ideals of multilinear operators, related measures and interpolation

[EN] We introduce and discuss several ways of extending the inner measure arisen from the closed injective hull of an ideal of linear operators to the multilinear case. In particular, we consider new measures that allow to characterize the operators that belong to a closed injective ideal of multilinear operators as those having measure equal to zero. Some interpolation formulas for these measures, and consequently interpolation results involving ideals of multilinear operators, are established. Examples and applications related to summing multilinear operators are also shown.

research product

Traced tensor norms and multiple summing multilinear operators

[EN] Using a general tensor norm approach, our aim is to show that some distinguished classes of summing operators can be characterized by means of an 'order reduction' procedure for multiple summing multilinear operators, which becomes the keystone of our arguments and can be considered our main result. We work in a tensor product framework involving traced tensor norms and the representation theorem for maximal operator ideals. Several applications are given not only to multi-ideals, but also to linear operator ideals. In particular, we get applications to multiple p-summing bilinear operators, (p, q)-factorable linear operators, tau(p)-summing linear operators and absolutely p-summing li…

research product

The support localization property of the strongly embedded subspaces of banach function spaces

[EN] Motivated by the well known Kadec-Pelczynski disjointifcation theorem, we undertake an analysis of the supports of non-zero functions in strongly embedded subspaces of Banach functions spaces. The main aim is to isolate those properties that bring additional information on strongly embedded subspaces. This is the case of the support localization property, which is a necessary condition fulflled by all strongly embedded subspaces. Several examples that involve Rademacher functions, the Volterra operator, Lorentz spaces or Orlicz spaces are provided.

research product

On Pietsch measures for summing operators and dominated polynomials

We relate the injectivity of the canonical map from $C(B_{E'})$ to $L_p(\mu)$, where $\mu$ is a regular Borel probability measure on the closed unit ball $B_{E'}$ of the dual $E'$ of a Banach space $E$ endowed with the weak* topology, to the existence of injective $p$-summing linear operators/$p$-dominated homogeneous polynomials defined on $E$ having $\mu$ as a Pietsch measure. As an application we fill the gap in the proofs of some results of concerning Pietsch-type factorization of dominated polynomials.

research product

The Schur property on projective and injective tensor products

The problem of whether the Schur property is passed from a Banach space to its (symmetric) projective n-fold tensor product is reformu lated in the language of polynomial ideals. As a result, a very closely related question is solved in the negative. It is also proved that the injective tensor product of infrabarrelled locally convex spaces with the Schur property has the Schur property as well.

research product

Pietsch's factorization theorem for dominated polynomials

Abstract We prove that, like in the linear case, there is a canonical prototype of a p -dominated homogeneous polynomial through which every p -dominated polynomial between Banach spaces factors.

research product

Topological Dual Systems for Spaces of Vector Measure p-Integrable Functions

[EN] We show a Dvoretzky-Rogers type theorem for the adapted version of the q-summing operators to the topology of the convergence of the vector valued integrals on Banach function spaces. In the pursuit of this objective we prove that the mere summability of the identity map does not guarantee that the space has to be finite dimensional, contrary to the classical case. Some local compactness assumptions on the unit balls are required. Our results open the door to new convergence theorems and tools regarding summability of series of integrable functions and approximation in function spaces, since we may find infinite dimensional spaces in which convergence of the integrals, our vector value…

research product

On distinguished polynomials and their projections

We study projections and injections between projective tensor products spaces or spaces of polynomials and we show that the example of a polynomial constructed in (4), that is neither p-dominated nor compact, can be identified with the projection map of the symmetric tensor product onto the space. Also we give a characterization of the weak and quasi approximation properties on symmetric tensor products.

research product

Preduals of spaces of homogeneous polynomials onLp-spaces

Given a regular probability measure μ on a compact Hausdorff space, we explicitly describe the predual of the Banach space of continuous n-homogeneous polynomials on L p (μ) as the completion of a (explicit constructed) subspace of L p/n (μ) with respect to a (explicitly constructed) norm π p/n . An application to the factorization of dominated polynomials is provided.

research product

Factorization of absolutely continuous polynomials

In this paper we study the ideal of dominated (p,s)-continuous polynomials, that extend the nowadays well known ideal of p-dominated polynomials to the more general setting of the interpolated ideals of polynomials. We give the polynomial version of Pietsch s factorization Theorem for this new ideal. Our factorization theorem requires new techniques inspired in the theory of Banach lattices.

research product

Factorization of (q,p)-summing polynomials through Lorentz spaces

[EN] We present a vector valued duality between factorable (q,p)-summing polynomials and (q,p)-summing linear operators on symmetric tensor products of Banach spaces. Several applications are provided. First, we prove a polynomial characterization of cotype of Banach spaces. We also give a variant of Pisier's factorization through Lorentz spaces of factorable (q,p)-summing polynomials from C(K)-spaces. Finally, we show a coincidence result for (q,p)-concave polynomials.(c) 2016 Elsevier Inc. All rights reserved.

research product

Didactics of mathematics and architecture: the golden ratio in la Lonja de Valencia

[EN] This paper has a twofold purpose. First, to structure and relate a teaching experience on the tutoring of a graduation work in Mathematics made in the University of Valencia. The main property of the didactic purpose involved in the project is that it deals with the geometric properties of a landmark building of the city of Valencia. Our aim is to analyze the process of formulation, firming up, documentation and elaboration of the work that was followed during this experience. Second, to analyze the methodology used to obtain and valuate the results that come from one of the fundamental parts of this work: the harmonic decomposition of the building named Lonja de la Seda in Valencia

research product

On Composition Ideals of Multilinear Mappings and Homogeneous Polynomials

Given an operator ideal I, we study the multi-ideal I ο L and the polynomial ideal I ο P). The connection with the linearizations of these mappings on projective symmetric tensor products is investigated in detail. Applications to the ideals of strictly singular and absolutely summing linear operators are obtained.

research product

HOLOMORPHIC SUPERPOSITION OPERATORS BETWEEN BANACH FUNCTION SPACES

AbstractWe prove that for a large class of Banach function spaces continuity and holomorphy of superposition operators are equivalent and that bounded superposition operators are continuous. We also use techniques from infinite dimensional holomorphy to establish the boundedness of certain superposition operators. Finally, we apply our results to the study of superposition operators on weighted spaces of holomorphic functions and the$F(p, \alpha , \beta )$spaces of Zhao. Some independent properties on these spaces are also obtained.

research product

A unified Pietsch domination theorem

In this paper we prove an abstract version of Pietsch's domination theorem which unify a number of known Pietsch-type domination theorems for classes of mappings that generalize the ideal of absolutely p-summing linear operators. A final result shows that Pietsch-type dominations are totally free from algebraic conditions, such as linearity, multilinearity, etc.

research product

Isometries of weighted spaces of holomorphic functions on unbounded domains

We study isometries between weighted spaces of holomorphic functions on unbounded domains in ℂn. We show that weighted spaces of holomorphic functions on unbounded domains may exhibit behaviour different from that observed on bounded domains. We calculate the isometries for specific weights on the complex plane and the right half-plane.

research product

Summability and estimates for polynomials and multilinear mappings

Abstract In this paper we extend and generalize several known estimates for homogeneous polynomials and multilinear mappings on Banach spaces. Applying the theory of absolutely summing nonlinear mappings, we prove that estimates which are known for mappings on l p spaces in fact hold true for mappings on arbitrary Banach spaces.

research product

When is the Haar measure a Pietsch measure for nonlinear mappings?

We show that, as in the linear case, the normalized Haar measure on a compact topological group $G$ is a Pietsch measure for nonlinear summing mappings on closed translation invariant subspaces of $C(G)$. This answers a question posed to the authors by J. Diestel. We also show that our result applies to several well-studied classes of nonlinear summing mappings. In the final section some problems are proposed.

research product

A note on multiple summing operators and applications

We prove a new result on multiple summing operators and, among other results and applications, we provide a new extension of Littlewood’s 4 / 3 inequality to m-linear forms.

research product

Weakly uniformly continuous holomorphic functions and the approximation property

Abstract We study the approximation property for spaces of Frechet and Gâteaux holomorphic functions which are weakly uniformly continuous on bounded sets. We show when U is a balanced open subset of a Baire or barrelled metrizable locally convex space, E , that the space of holomorphic functions which are weakly uniformly continuous on U -bounded sets has the approximation property if and only if the strong dual of E , E ′ b , has the approximation property. We also characterise the approximation property for these spaces of vector-valued holomorphic functions in terms of the tensor product of the corresponding space of scalar-valued holomorphic functions and the range space.

research product

Dominated polynomials on infinite dimensional spaces

The aim of this paper is to prove a stronger version of a conjecture on the existence of non-dominated scalar-valued m-homogeneous polynomials (m>=3) on arbitrary infinite dimensional Banach spaces.

research product

Isometries between spaces of weighted holomorphic functions

research product

Complete weights andv-peak points of spaces of weighted holomorphic functions

We examine the geometric theory of the weighted spaces of holomorphic functions on bounded open subsets ofC n ,C n ,H v (U) and\(H_{v_o } (U)\), by finding a lower bound for the set of weak*-exposed and weak*-strongly exposed points of the unit ball of\(H_{v_o } (U)'\) and give necessary and sufficient conditions for this set to be naturally homeomorphic toU. We apply these results to examine smoothness and strict convexity of\(H_{v_o } (U)\) and\(H_v (U)\). We also investigate whether\(H_{v_o } (U)\) is a dual space.

research product

Factorization of strongly (p,sigma)-continuous multilinear operators

We introduce the new ideal of strongly-continuous linear operators in order to study the adjoints of the -absolutely continuous linear operators. Starting from this ideal we build a new multi-ideal by using the composition method. We prove the corresponding Pietsch domination theorem and we present a representation of this multi-ideal by a tensor norm. A factorization theorem characterizing the corresponding multi-ideal - which is also new for the linear case - is given. When applied to the case of the Cohen strongly -summing operators, this result gives also a new factorization theorem.

research product

The surjective hull of a polynomial ideal

The aim of this paper is the study of surjective ideals of homogeneous polynomials between Banach spaces. To do so we define the surjective hull of a polynomial ideal and prove the main properties of this hull procedure. For a more comprehensive theory, new lifting properties of homogeneous polynomials are proved and applied to the description of the surjective hulls of the ideals of I-bounded polynomials and of composition polynomials ideals. Several applications are provided.

research product

Domination spaces and factorization of linear and multilinear summing operators

[EN] It is well known that not every summability property for multilinear operators leads to a factorization theorem. In this paper we undertake a detailed study of factorization schemes for summing linear and nonlinear operators. Our aim is to integrate under the same theory a wide family of classes of mappings for which a Pietsch type factorization theorem holds. Our construction includes the cases of absolutely p-summing linear operators, (p, sigma)-absolutely continuous linear operators, factorable strongly p-summing multilinear operators, (p(1), ... , p(n))-dominated multilinear operators and dominated (p(1), ... , p(n); sigma)-continuous multilinear operators.

research product