6533b839fe1ef96bd12a5a44
RESEARCH PRODUCT
Factorization of (q,p)-summing polynomials through Lorentz spaces
Pilar RuedaE. A. Sánchez PérezMieczysław Mastyłosubject
Discrete mathematicsMathematics::Functional AnalysisPure mathematicsApplied MathematicsDiscrete orthogonal polynomials010102 general mathematicsBanach space010103 numerical & computational mathematics01 natural sciencesClassical orthogonal polynomialsDifference polynomialsFactorizationPisier's theoremWilson polynomialsOrthogonal polynomialsSymmetric tensorSumming polynomialsFactorization0101 mathematicsMATEMATICA APLICADAAnalysisMathematicsdescription
[EN] We present a vector valued duality between factorable (q,p)-summing polynomials and (q,p)-summing linear operators on symmetric tensor products of Banach spaces. Several applications are provided. First, we prove a polynomial characterization of cotype of Banach spaces. We also give a variant of Pisier's factorization through Lorentz spaces of factorable (q,p)-summing polynomials from C(K)-spaces. Finally, we show a coincidence result for (q,p)-concave polynomials.(c) 2016 Elsevier Inc. All rights reserved.
year | journal | country | edition | language |
---|---|---|---|---|
2017-05-01 | Journal of Mathematical Analysis and Applications |