Factorization of (q,p)-summing polynomials through Lorentz spaces
[EN] We present a vector valued duality between factorable (q,p)-summing polynomials and (q,p)-summing linear operators on symmetric tensor products of Banach spaces. Several applications are provided. First, we prove a polynomial characterization of cotype of Banach spaces. We also give a variant of Pisier's factorization through Lorentz spaces of factorable (q,p)-summing polynomials from C(K)-spaces. Finally, we show a coincidence result for (q,p)-concave polynomials.(c) 2016 Elsevier Inc. All rights reserved.