0000000000011261

AUTHOR

Barbara Oesch-bartlomowicz

Modulation of the control of mutagenic metabolites derived from cyclophosphamide and ifosfamide by stimulation of protein kinase A

The phosphorylation of the 2 major phenobarbital-inducible cytochrome P450 isoenzymes IIB1 and IIB2 was increased in intact hepatocytes by the action of the membrane-permeating cAMP derivative N6,O2'-dibutyryl-cAMP. Under these conditions cyclophosphamide and ifosfamide (which are known to be activated by cytochrome P450 IIB1) were investigated for mutagenicity in Salmonella typhimurium TA1535 and TA100 and for cytotoxicity in TA1535. Cyclophosphamide and ifosfamide were transformed to mutagenic and cytotoxic metabolites by the hepatocytes. The activation of both drugs to mutagens was markedly reduced after pretreatment of the hepatocytes with the membrane-permeating cAMP derivative N6,O2'-…

research product

Toxicological implications of enzymatic control of reactive metabolites.

Many foreign compounds are transformed into reactive metabolites, which may produce genotoxic effects by chemically altering critical biomolecules. Reactive metabolites are under the control of activating, inactivating and precursor sequestering enzymes. Such enzymes are under the long-term control of induction and repression, as well as the short-term control of post-translational modification and low molecular weight activators or inhibitors. In addition, the efficiency of these enzyme systems in preventing reactive metabolite-mediated toxicity is directed by their subcellular compartmentalization and isoenzymic multiplicity. Extrapolation from toxicological test systems to the human req…

research product

Analysis of DNA single-strand breaks in human venous blood: a technique which does not require isolation of white blood cells.

For DNA strand break analysis in human white blood cells, usually metrizoate-Ficoll centrifugation is used to isolate mononuclear cells. This procedure is time-consuming and requires at least 20 ml of blood per sample. Therefore, we developed a technique which does not require isolation of white blood cells prior to DNA strand break analysis by alkaline elution (direct method). The sensitivity of this new technique was compared to that of the standard method, which includes isolation of mononuclear blood cells. A statistically significant increase in sensitivity was observed using the direct method. After in vitro gamma-irradiation of venous blood, an increase in the elusion rate of 7.7 × 1…

research product

Styrene Metabolism, Genotoxicity, and Potential Carcinogenicity

This report reviews styrene biotransformation, including minor metabolic routes, and relates metabolism to the genotoxic effects and possible styrene-related carcinogenicity. Styrene is shown to require metabolic activation in order to become notably genotoxic and styrene 7,8-oxide is shown to contribute quantitatively by far the most (in humans more than 95%) to the genotoxicity of styrene, while minor ring oxidation products are also shown to contribute to local toxicities, especially in the respiratory system. Individual susceptibility depending on metabolism polymorphisms and individual DNA repair capacity as well as the dependence of the nonlinearity of the dose-response relationships …

research product

Environmental exposure to dioxins and polychlorinated biphenyls reduce levels of gonadal hormones in newborns: Results from the Duisburg cohort study

Abstract Background Endocrine dysfunction related to the hypothalamic–pituitary–thyroid (HPT) and/or the hypothalamic–pituitary–gonadal axis (HPG) is being discussed as underlying developmental adversity of polychlorinated dibenzo- p -dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs). This study was done to evaluate effects related to the HPG axis. Methods A birth-cohort study was initiated in the year 2000. Healthy mother–infant pairs were recruited in the industrialized city of Duisburg, Germany. Dioxins, dioxin-like PCBs and six indicator PCBs were measured in maternal blood during pregnancy and in maternal milk. Testosterone and estradiol levels were measured in m…

research product

Fast Regulation of Cytochrome P450 Activities by Phosphorylation and Consequences for Drug Metabolism and Toxicity

In contrast to the well-known regulation of cytochrome P450 (CYP) activity by enzyme induction, which represents a process with slow onset and slow offset, more recent studies revealed phosphorylation as a fast (within observation instantaneous) and isoenzyme-selective regulation. The phosphorylated enzyme (investigated isozyme: CYP2B1) was fully inactive. The phosphorylation is mediated by PKA and hence under control of hormones and drugs that alter cellular cAMP levels. The consequences for the metabolic control of toxic species derived from drugs and environmental carcinogens are discussed. This information will help to improve therapy with drugs metabolized by CYPs which are phosphoryla…

research product

In vivo fate mapping with SCL regulatory elements identifies progenitors for primitive and definitive hematopoiesis in mice.

10 páginas, 6 figuras.-- et al.

research product

Drug-metabolizing enzymes in the skin of man, rat, and pig.

The mammalian skin has long been considered to be poor in drug metabolism. However, many reports clearly show that most drug metabolizing enzymes also occur in the mammalian skin albeit at relatively low specific activities. This review summarizes the current state of knowledge on drug metabolizing enzymes in the skin of human, rat, and pig, the latter, because it is often taken as a model for human skin on grounds of anatomical similarities. However only little is known about drug metabolizing enzymes in pig skin. Interestingly, some cytochromes P450 (CYP) have been observed in the rat skin which are not expressed in the rat liver, such as CYP 2B12 and CYP2D4. As far as investigated most d…

research product

Control of the mutagenicity of aromatic amines by protein kinases and phosphatases

The role of protein kinase C and protein phosphatases was examined in the control of mutagenic metabolites of aromatic amines. Various metabolic activating systems derived from rat liver were treated with: 12-O-tetradecanoylphorbol-13-acetate (TPA), a protein kinase C modulator; okadaic acid (OA), a potent inhibitor of serine/threonine protein phosphatases (PP1 and PP2A); and ortho-vanadate (OV), an inhibitor of tyrosine phosphatases. TPA used over a wide concentration range (10−9–10−6 M) did not affect the bacterial mutagenicity of the aromatic amines and of the aromatic amide investigated, 2-aminoanthracene, 2-aminofluorene and 2-acetylaminofluorene (2AAF). At the molecular level, TPA did…

research product

TCDD deregulates contact inhibition in rat liver oval cells via Ah receptor, JunD and cyclin A.

The aryl hydrocarbon receptor (AhR) is a transcription factor involved in physiological processes, but also mediates most, if not all, toxic responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Activation of the AhR by TCDD leads to its dimerization with aryl hydrocarbon nuclear translocator (ARNT) and transcriptional activation of several phase I and II metabolizing enzymes. However, this classical signalling pathway so far failed to explain the pleiotropic hazardous effects of TCDD, such as developmental toxicity and tumour promotion. Thus, there is an urgent need to define genetic programmes orchestrated by AhR to unravel its role in physiology and toxicology. Here we show that TCDD …

research product

Glutathione S-transferase T1 and M1 gene defects in ovarian carcinoma

Glutathione S-transferases (GSTs) M1 and T1 are known to be polymorphic in humans. Both polymorphisms are due to gene deletions, which are responsible for the existence of null genotypes. The gene defect of GSTT1 has been reported to be associated with an increased risk of myelodysplastic syndromes, astrocytoma and meningioma. A lack of GSTM1 was associated with tobacco smoke-induced lung and bladder cancer. In this study we examined whether the GSTT1 and/or GSTM1 homozygous null genotypes were associated with an increased risk of ovarian cancer using a multiplex polymerase chain reaction protocol. The GSTT1 null genotype was observed in 14% of the control subjects that had never suffered f…

research product

Mechanism-based predictions of interactions.

Abstract Exposure to more than one toxic compound is common in real life. The resulting toxic effects are often more than the simple sum of the effects of the individual compounds. It is unlikely that it will ever be possible to test all combinations. It is therefore highly desirable to improve or develop means for reasonably approximating predictions of interactions. In order to be valid and extrapolatable, these predictions are most promising if they are mechanism-based. Examples will be given for possibilities of mechanism-based predictions of interactions which exceed trivialities of simple increases by enzyme induction of enzymatic rates of a given biotransformation pathway leading to …

research product

Role of the Well-Known Basic and Recently Discovered Acidic Glutathione S-Transferases in the Control of Genotoxic Metabolites

Glutathione S-transferases (GSTs; E.C. 2. 5. 1. 18) are a family of enzymes which have increasingly attracted the interest of toxicologists, pharmacologists, biochemists and clinicians since their discovery in 1961 (1). Initially, GSTs were believed to serve as intracellular transport proteins for endogenous compounds with limited solubility in water, thus acting as an intracellular equivalent to albumin in blood plasma. In this assumed capacity of reversible binding and transport of various ligands, the corresponding protein was named ligandin (2). Following the discovery of abundant GST occurrence in most forms of aerobic life including plants, and the GST-catalysed conjugation of a wide …

research product

Importance of Individual Enzymes in the Control of Ultimate Carcinogens

The metabolic activation of most chemical mutagens and carcinogens is a prerequisite for their mutagenic and carcinogenic activity. Reactive metabolites are under the control of activating, inactivating and precursor sequestering enzymes. These enzymes are under the long-term control of induction and repression and under the short-term control of posttranslational modification. As far as carcinogen-metabolizing enzymes are concerned, posttranslational modification has received little attention. This short-term regulation may be especially important since it works fast and may affect the enzymatic activity as well as the degradation of the enzyme. The enzymatic activity is modified by activa…

research product

cAMP-dependent phosphorylation of CYP2B1 as a functional switch for cyclophosphamide activation and its hormonal controlin vitro andin vivo

An important feature of cytochrome P450 (CYP) 2B1 is its high ability to convert the prodrug cyclophosphamide (CPA) to therapeutically cytotoxic metabolites, resulting in interstrand DNA-cross-linking and cell death. We have examined whether and how the phosphorylation of CYP2B1 influences CPA metabolic activation in vitro and in vivo. We found first that only part of the total CYP2B1 pool undergoes phosphorylation. This part is fully inactivated. Second, phosphorylation of CYP2B1 in intact hepatocytes reduced by up to 75% toxification of CPA to mutagenic metabolites (totally dependent on the same preferentially CYP2B-catalyzed 4-hydroxylation of CPA as is the generation of highly cytotoxic…

research product

Use of Mechanistic Information for Adequate Metabolic Design of Genotoxicity Studies and Toxicological Interactions of Drugs and Environmental Chemicals

Microorganisms as well as mammalian cells used for mutagenicity investigations have little or no activities for metabolism of premutagens and precarcinogens, i.e. of compounds ultimately leading to mutations and cancer but first requiring metabolic activation. Therefore, to such cells an exogenous activating system is added, generally the postmitochondrial supernatant fraction of the liver homogenate and a NADPH-generating system (Ames et al. 1976). In this situation enzymes requiring cofactors other than NADP(H) are unlikely to be active. Thus, this metabolic system is rather artificial. Monooxygenases are active in this system. They, for example, convert polycyclic aromatic hydrocarbons t…

research product

Role of cAMP in mediating AHR signaling.

Regulation of the nuclear import of many transcription factors represents a step in gene regulation which is crucial for a number of cellular processes. The aryl hydrocarbon receptor (AHR), a basic helix-loop-helix protein of the PAS (PER-ARNT-SIM) family of transcriptional regulators is a cytosol-associated and ligand-activated receptor. The environmental toxin dioxin binds with high affinity to AHR rendering it nuclear and leading to the activation of AHR sensitive genes. However, the fact, that the AHR mediates a large variety of physiological events without the involvement of any known exogenous ligand, including liver and vascular system development, maturation of the immune system, re…

research product

Generation and characterization of tTS-H4: a novel transcriptional repressor that is compatible with the reverse tetracycline-controlled TET-ON system

Background Conditional gene regulatory systems ensuring tight and adjustable expression of therapeutic genes are central for developing future gene therapy strategies. Among various regulatory systems, tetracycline-controlled gene expression has emerged as a safe and reliable option. Moreover, the tightness of tetracycline-regulated gene switches can be substantially improved by complementing transcriptional activators with antagonizing repressors. Methods To develop novel tetracycline-responsive transcriptional repressors, we fused various transcriptional silencing domains to the TetR (B/E) DNA-binding and dimerization domain of the Tn10-encoded tetracycline resistance operon (TetR (B/E)).…

research product

Aryl hydrocarbon receptor activation by cAMP vs. dioxin: divergent signaling pathways.

Even before the first vertebrates appeared on our planet, the aryl hydrocarbon receptor ( AHR ) gene was present to carry out one or more critical life functions. The vertebrate AHR then evolved to take on functions of detecting and responding to certain classes of environmental toxicants. These environmental pollutants include polycyclic aromatic hydrocarbons (e.g., benzo[ a ]pyrene), polyhalogenated hydrocarbons, dibenzofurans, and the most potent small-molecular-weight toxicant known, 2,3,7,8-tetrachlorodibenzo- p -dioxin (TCDD or dioxin). After binding of these ligands, the activated AHR translocates rapidly from the cytosol to the nucleus, where it forms a heterodimer with aryl hydroc…

research product

Modulation of mutagenicity by phosphorylation of mutagen-metabolizing enzymes.

In this Minireview, we discuss our findings on phosphorylation of cytochromes P450 (CYP) and influence of this modification on metabolic toxification and/or detoxification of a variety of mutagens. We show that phosphorylation drastically interferes with the mutagenicity of several classes of compounds which are of high human relevance (cytostatic drugs of the cyclophosphamide type, aromatic amines/amides, and nitrosamines). We illustrate this by describing the consequences of the stimulation of protein kinase A (with the example of CYP2B1 and CYP2E1), stimulation of protein kinase C, and inhibition of protein phosphatases PP1 and PP2A (with the example of CYP1A1 and CYP1A2). We discuss a p…

research product

Differential modulation of CYP2E1 activity by cAMP-dependent protein kinase upon Ser129 replacement.

Many toxic compounds are activated by cytochrome P450 (CYP) 2E1 to reactive metabolites, which represents a potential hazard for cellular homeostasis. Therefore knowledge about CYP2E1 regulation could be of great biological importance. It has been shown that CYP2E1 is controlled transcriptionally and post-translationally by phosphorylation. In the present study we investigated the role of serine-129 (Ser129) in the protein kinase A (PKA) recognition sequence motif Arg-Arg-Phe-Ser129. To gain further insights into the possible relevance of Ser129 for CYP2E1 function, Ser129 was replaced by alanine (Ala) or glycine (Gly) by site-directed mutations of the cDNA coding for CYP2E1. The mutant cDN…

research product

Toxicity as prime selection criterion among SARS-active herbal medications

We present here a new selection criterion for prioritizing research on efficacious drugs for the fight against COVID-19: the relative toxicity versus safety of herbal medications, which were effective against SARS in the 2002/2003 epidemic. We rank these medicines according to their toxicity versus safety as basis for preferential rapid research on their potential in the treatment of COVID-19. The data demonstrate that from toxicological information nothing speaks against immediate investigation on, followed by rapid implementation of Lonicera japonica, Morus alba, Forsythia suspensa, and Codonopsis spec. for treatment of COVID-19 patients. Glycyrrhiza spec. and Panax ginseng are ranked in …

research product

Phosphorylation of cytochrome P450 isoenzymes in intact hepatocytes and its importance for their function in metabolic processes.

Recent data show that besides the well-known long-term regulation of cytochrome P450-dependent monooxygenase activity by induction there also exists a fast regulation by phosphorylation. This phosphorylation occurs when purified cytochromes P450 are combined with purified protein kinases, and also in intact cells. This process is donor- and acceptor-selective leading to phosphorylation of defined isoenzymes by defined protein kinases. This in turn leads to fast and marked changes in metabolism which are selective for given substrates and regio- and stereo-selective for given positions. This in turn is selectively and differentially influenced by the individual control of the protein kinase …

research product

Cytochrome-P450 phosphorylation as a functional switch

Xenobiotic metabolizing cytochromes P450 (CYP) were shown to be phosphorylated in vitro (using purified protein kinases together with purified CYPs), in intact cells (in V79 cells after transfection of cDNAs coding for individual CYPs, in diagnostic mutants, in hepatocytes), and in whole organisms (rats). CYP phosphorylation is highly isoenzyme selective in that only some CYPs are phosphorylated. Protein kinase A (PKA) was identified as a major catalyst for the phosphorylation of CYPs. The PKA recognition motif Arg-Arg-X-Ser is present in several members of the CYP2 family, but is used by only some of them, most notably by CYP2B1/2B2 and CYP2E1. For CYP2B1 it was shown that a substantial po…

research product

Guanine 6-O-Methylation Pattern within the Dioxin Responsive Element of theCYP1A1 Enhancer Shows Two Critical Guanines for AhR/ARNT Binding

The core-recognition motif for TCDD-liganded AhR/ARNT complex of the dioxin-responsive element (DRE) contains four guanine residues, three on the antisense (5'-T T / A GCGTG-3') and one on the sense (5'-CACGC A / T A-3') strand. It has been reported that, in methylation-protection and methylation-interference assays, the TCDD-liganded AhR/ARNT contacts all four guanine residues. On the other hand, it is known that some anticancer drugs, and various environmental and workplace chemicals, including strongly human carcinogenic nitrosoamines, lead to the highly miscoding 6-O-methylation of guanine. In the present study, we have investigated whether specific methylation of guanine at the 6-O-pos…

research product

Significance of Posttranslational Modification of Drug Metabolizing Enzymes by Phosphorylation for the Control of Carcinogenic Metabolites

The total activity of foreign compound metabolizing enzymes may change by altering the amount or the specific activity of the enzyme by induction or repression, or by activation or inhibition. The important contribution of enzyme induction is well known (Conney 1982, Oesch 1986, Nebert and Jones 1989). This is a relatively slow process which requires the biosynthesis of the enzyme protein. The possibility of a faster regulation of foreign compound metabolism by posttranslational modification by phosphorylation of an already preexisting protein molecule has only recently received attention. A central role in the metabolism of foreign compounds is played by the cytochrome P450-dependent monoo…

research product

Induction of DNA single-strand breaks by 131I and 99mTc in human mononuclear blood cells in vitro and extrapolation to the in vivo situation.

The radionuclides (131)I and (99m)Tc are frequently used for therapy of benign and malignant thyroid disease ((131)I) and for diagnosis of thyroid and other diseases ((99m)Tc). However, the levels of DNA single-strand breaks (SSBs) induced in cells of patients after administration of (131)I and (99m)Tc are not known. In this study, we measured the number of SSBs per cell induced by (131)I and (99m)Tc in vitro, extrapolated the results to the clinical situation, and assessed their biological relevance by comparing levels of SSBs induced after therapeutic administration of (131)I and (99m)Tc to those induced by endogenous processes or by occupational exposure to genotoxic substances. A linear…

research product

Circadian rhythms and chemical carcinogenesis: Potential link. An overview.

Circadian rhythm is an integral and not replaceable part of the organism's homeostasis. Its signalling is multidimensional, overlooking global networks such as chromatin remodelling, cell cycle, DNA damage and repair as well as nuclear receptors function. Understanding its global networking will allow us to follow up not only organism dysfunction and pathology (including chemical carcinogenesis) but well-being in general having in mind that time is not always on our side. The authors thank ECNIS (Environmental Cancer, Nutrition and Individual Susceptibility), a network of excellence operating within the European Union 6th Framework Program, Priority 5: Food Quality and Safety (Contract no. …

research product

Control of the mutagenicity of arylamines by protein kinases and phosphatases:

Treatment of rat hepatocytes with the phosphatase inhibitors okadaic acid or ortho-vanadate had led to an 80% decrease in the bacterial mutagenicity of several aromatic amines metabolically activated by these hepatocytes. This is the most dramatic change yet demonstrated in mutagenicity by phosphorylation modulation. However, incorporation of phosphate into and catalytic activity of cytochromes P450 (CYP) 1A1 and 1A2, the major catalysts for the first step in the toxication of aromatic amines, were unchanged. We therefore investigated whether changes in the phosphorylation status would influence the activities of the N-acetyltransferases NAT1 and/or NAT2, being responsible for one of the tw…

research product

The nucleotide excision repair protein XPC is essential for bulky DNA adducts to promote interleukin-6 expression via the activation of p38-SAPK

Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants, and many are potent carcinogens. Benzo[a]pyrene (B[a]P), one of the best-studied PAHs, is metabolized ultimately to the genotoxin anti-B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE). BPDE triggers stress responses linked to gene expression, cell death and survival. So far, the underlying mechanisms that initiate these signal transduction cascades are unknown. Here we show that BPDE-induced DNA damage is recognized by DNA damage sensor proteins to induce activation of the stress-activated protein kinase (SAPK) p38. Surprisingly, the classical DNA damage response, which involves the kinases ATM and ATR, is not involved in p38-SA…

research product