0000000000011678

AUTHOR

Virginie Moutarlier

Adsorption of gelatin during electrodeposition of copper and tin-copper alloys from acid sulfate electrolyte

International audience; An acid Cu–Sn deposition bath was developed, and copper and copper–tin coatings were electrodeposited on polycrystalline platinum. The effect of gelatin on copper and copper–tin electrodeposition from acid sulfate solutions has been investigated by a variety of electrochemical methods (voltammetric studies and electrochemical quartz crystal microbalance) as well as by morphologic technique (scanning electron microscopy). The electrochemical results have shown that the overpotential is required when gelatin is added, indicating the presence of interaction between the additive and the coating. From the results of X-ray photoelectron spectroscopy, PM-IRRAS and cyclic vo…

research product

Power ultrasound irradiation during the alkaline etching process of the 2024 aluminium alloy

Abstract Prior to any surface treatment on an aluminum alloy, a surface preparation is necessary. This commonly consists in performing an alkaline etching followed by acid deoxidizing. In this work, the use of power ultrasound irradiation during the etching step on the 2024 aluminum alloy was studied. The etching rate was estimated by weight loss, and the alkaline film formed during the etching step was characterized by glow discharge optical emission spectrometry (GDOES) and scanning electron microscope (SEM). The benefit of power ultrasound during the etching step was confirmed by pitting potential measurement in NaCl solution after a post-treatment (anodizing).

research product

Oxide or carbide nanoparticles synthesized by laser ablation of a bulk Hf target in liquids and their structural, optical, and dielectric properties

International audience; Laser ablation of a bulk Hf target in deionized (DI) water, ethanol, or toluene was carried out for the production of nanoparticles' colloidal solutions. Due to the interaction of the ablation plasma plume species with the species which are produced by the liquid decomposition at the plume-liquid interface, hafnia (HfO2) nanoparticles are synthesized in DI water, hafnium carbide (HfC) nanoparticles in toluene, and a mixture of these in ethanol. The hafnia nanoparticles are in the monoclinic low temperature phase and in the tetragonal and fcc high temperature phases. Their size distribution follows log-normal function with a median diameter in the range of 4.3–5.3 nm.…

research product

Comparison of electropolishing behaviours of TSC, ALM and cast 316L stainless steel in H 3 PO 4 /H 2 SO 4

Abstract In recent decades, new manufacturing processes have been developed such as Thermal Spray Coating (TSC) and Additive Layer Manufacturing (ALM), which reduce or avoid machining of parts with complex geometries. This study aims to develop an Electropolishing (EP) process for TSC and ALM 316L Stainless Steel (SS). EP is an anodic dissolution process currently used in industry to reduce surface roughness and obtain a bright and smooth finish. The EP mechanism was studied, in a mixture of H3PO4 and H2SO4, for TSC, ALM and “cast” SS in order to determine the best conditions (time, temperature, potential). Special attention was paid to surface characterization by combining several techniqu…

research product

Ultracompact x-ray dosimeter based on scintillators coupled to a nano-optical antenna

International audience; We show that nano-optical antennas are capable of controlling the luminescence induced by the absorption of x rays into matter. The x-ray-excited luminescence from a tiny scintillation cluster coupled to a horn nano-optical antenna is highly directed and determined by the antenna’s geometrical parameters. Directionality is sufficiently high to efficiently outcouple the x-ray-excited luminescence to a narrow single-mode optical fiber, thus enabling ultracompact fiber-integrated x-ray sensors. Our nano-optically driven approach offers the possibility of x-ray profiling and dosimetry in ultra-confined environments, opening up new avenues in the fields of x-ray imaging, …

research product

Influence of modification time and high frequency ultrasound irradiation on self-assembling of alkylphosphonic acids on stainless steel : electrochemical and spectroscopic studies

International audience; Self-assembly of alkylphosphonic acids on stainless steel was investigated under different conditions. Four different alkylphosphonic acids exhibiting alkyl chain of various size were synthesized and studied: butylphosphonic acid (C4P), octylphosphonic acid (C8P), decylphosphonic acid (C10P), and hexadecylphosphonic acid (C16P). Electrochemistry experiments were extensively carried out in order to determine electrochemical surface blocking of adsorbed layers in function of grafting time. In term of surface blocking, an 8h modification time was optimal for all alkylphosphonic acids. Longer immersion times lead to degradation of adsorbed layers. For the first time, gra…

research product

Elaboration of ammonia gas sensors based on electrodeposited polypyrrole - cobalt phthalocyanine hybrid films

The electrochemical incorporation of a sulfonated cobalt phthalocyanine (sCoPc) in conducting polypyrrole (PPy) was done, in the presence or absence of LiClO4, in order to use the resulting hybrid material for the sensing of ammonia. After electrochemical deposition, the morphological features and structural properties of polypyrrole/phthalocyanine hybrid films were investigated and compared to those of polypyrrole films. A gas sensor consisting in platinum microelectrodes arrays was fabricated using silicon microtechnologies, and the polypyrrole and polypyrrole/phthalocyanine films were electrochemically deposited on the platinum microelectrodes arrays of this gas sensor. When exposed to a…

research product

An ultrasonic-assisted process for copper recovery in a des solvent: Leaching and re-deposition

Abstract The continuous growth of the electronic equipment market has led to an increased amount of scraping that it becomes necessary to recover. A hydrometallurgical method for copper and precious metal recovery from e-waste must consist of a number of steps: leaching, ion separation and subsequent electrochemical re-deposition of the target metal. Although this task is achievable in aqueous solutions, it requires strong acid or cyanide solutions. The aim of the study is to develop a new environmentally benign process by using a Deep Eutectic Solvent (DES), a form of cheap and safe ionic liquid, as an electrolyte for both leaching and electrodeposition. The experiments were conducted in a…

research product