0000000000011938

AUTHOR

V. Marín-borrás

MOCVD growth of CdO very thin films: Problems and ways of solution

Abstract In this paper the growth of CdO by the MOCVD technique at atmospheric pressure has been studied in order to achieve very thin films of this material on r-sapphire substrates. The growth evolution of these films was discussed and the existence of a threshold thickness, below which island-shaped structures appear, was demonstrated. Some alternatives to reduce this threshold thickness have been proposed in the frame of the analysis of the crystal growth process. The morphology and structural properties of the films were analyzed by means of SEM and HRXRD. High-quality flat CdO samples were achieved with thicknesses up to 20 nm, which is five times thinner than the values previously re…

research product

Structural and vibrational study of Bi2Se3under high pressure

The structural and vibrational properties of bismuth selenide (Bi${}_{2}$Se${}_{3}$) have been studied by means of x-ray diffraction and Raman scattering measurements up to 20 and 30 GPa, respectively. The measurements have been complemented with ab initio total-energy and lattice dynamics calculations. Our experimental results evidence a phase transition from the low-pressure rhombohedral ($R$-3$m$) phase (\ensuremath{\alpha}-Bi${}_{2}$Se${}_{3}$) with sixfold coordination for Bi to a monoclinic $C$2/$m$ structure (\ensuremath{\beta}-Bi${}_{2}$Se${}_{3}$) with sevenfold coordination for Bi above 10 GPa. The equation of state and the pressure dependence of the lattice parameters and volume …

research product

High-pressure studies of topological insulators Bi2Se3, Bi2Te3, and Sb2Te3

Bi2Se3, Bi2Te3, and Sb2Te3 are narrow bandgap semiconductors with tetradymite crystal structure (R-3m) which have been extensively studied along with their alloys due to their promising operation as thermoelectric materials in the temperature range between 300 and 500¿K. Studies on these layered semiconductors have increased tremendously in the last years since they have been recently predicted and demonstrated to behave as 3D topological insulators. In particular, a number of high-pressure studies have been done in the recent years in these materials. In this work we summarize the main results of the high-pressure studies performed in this family of semiconductors to date. In particular, w…

research product

High-pressure vibrational and optical study of Bi2Te3

We report an experimental and theoretical lattice dynamics study of bismuth telluride (Bi2Te 3 )u p to 23 GPa together with an experimental and theoretical study of the optical absorption and reflection up to 10 GPa. The indirect bandgap of the low-pressure rhombohedral (R-3m) phase (α-Bi2Te 3) was observed to decrease with pressure at a rate of − 6m eV/GPa. In regard to lattice dynamics, Raman-active modes of α-Bi2Te 3 were observed up to 7.4 GPa. The pressure dependence of their frequency and width provides evidence of the presence of an electronic-topological transition around 4.0 GPa. Above 7.4 GPa a phase transition is detected to the C2/m structure. On further increasing pressure two …

research product

Optical properties of ZnMgO films grown by spray pyrolysis and their application to UV photodetection

This work presents a comprehensive optical characterization of Zn1−xMgxO thin films grown by spray pyrolysis (SP). Absorption measurements show the high potential of this technique to tune the bandgap from 3.30 to 4.11 eV by changing the Mg acetate content in the precursor solution, leading to a change of the Mg-content ranging from 0 up to 35%, as measured by transmission electron microscopy-energy dispersive x-ray spectroscopy. The optical emission of the films obtained by cathodoluminescence and photoluminescence spectroscopy shows a blue shift of the peak position from 3.26 to 3.89 eV with increasing Mg incorporation, with a clear excitonic contribution even at high Mg contents. The lin…

research product

Trapping of three-dimensional electrons and transition to two-dimensional transport in the three-dimensional topological insulator Bi2Se3under high pressure

This paper reports an experimental and theoretical investigation on the electronic structure of bismuth selenide (Bi2Se3) up to 9 GPa. The optical gap of Bi2Se3 increases from 0.17 eV at ambient pressure to 0.45 eV at 8 GPa. The quenching of the Burstein-Moss effect in degenerate samples and the shift of the free-carrier plasma frequency to lower energies reveal a quick decrease of the bulk three-dimensional (3D) electron concentration under pressure. On increasing pressure the behavior of Hall electron concentration and mobility depends on the sample thickness, consistently with a gradual transition from mainly 3D transport at ambient pressure to mainly two-dimensional (2D) transport at hi…

research product

Fabrication and characterization of low cost Cu 2 O/ZnO:Al solar cells for sustainable photovoltaics with earth abundant materials

Abstract The low cost electrodeposition method was used to grow Cu2O thin films and experimentally determine the optimal absorber layer thickness. Raman scattering studies indicate the presence of solely crystalline Cu2O and SEM images show that the thin films consist of grains with a pyramidal shape. The influence of the thickness of the light absorbing Cu2O layer on the basic characteristic of the heterojunction and their properties have been investigated using reflectivity, current–voltage (J–V), capacitance–voltage (C–V) and the external quantum efficiency (EQE) measurements. The depletion layer, the charge collection length of the minority carrier, and reflectivity are the main factors…

research product

Observation of a charge delocalization from Se vacancies inBi2Se3: A positron annihilation study of native defects

By means of positron annihilation lifetime spectroscopy, we have investigated the native defects present in ${\mathrm{Bi}}_{2}{\mathrm{Se}}_{3}$, which belongs to the family of topological insulators. We experimentally demonstrate that selenium vacancy defects $({\text{V}}_{\text{Se1}})$ are present in ${\mathrm{Bi}}_{2}{\mathrm{Se}}_{3}$ as-grown samples, and that their charge is delocalized as temperature increases. At least from 100 K up to room temperature both ${\text{V}}_{\text{Se1}}^{0}$ and ${\text{V}}_{\text{Se1}}^{+}$ charge states coexist. The observed charge delocalization determines the contribution of ${\text{V}}_{\text{Se1}}$ defects to the $n$-type conductivity of ${\mathrm{…

research product

Front Cover: High-pressure studies of topological insulators Bi2 Se3 , Bi2 Te3 , and Sb2 Te3 (Phys. Status Solidi B 4/2013)

research product

Phase segregation in Mg$_{x}$Zn$_{1-x}$O probed by optical absorption and photoluminescence at high pressure

The appearance of segregated wurtzite Mg$_x$Zn$_{1-x}$O with low Mg content in thin films with $x>0.3$ affected by phase separation, cannot be reliably probed with crystallographic techniques owing to its embedded nanocrystalline configuration. Here we show a high-pressure approach which exploits the distinctive behaviors under pressure of wurtzite Mg$_x$Zn$_{1-x}$O thin films with different Mg contents to unveil phase segregation for $x>0.3$. By using ambient conditions photoluminescence (PL), and with optical absorption and PL under high pressure for $x=0.3$ we show that the appearance of a segregated wurtzite phase with a magnesium content of x $\sim$ 0.1 is inherent to the wurtzit…

research product