0000000000012375

AUTHOR

Niklas Nilius

showing 9 related works from this author

Electron quantization in arbitrarily shaped gold islands on MgO thin films

2013

Low-temperature scanning tunneling microscopy has been employed to analyze the formation of quantum well states (QWS) in two-dimensional gold islands, containing between 50 and 200 atoms, on MgO thin films. The energy position and symmetry of the eigenstates are revealed from conductance spectroscopy and imaging. The majority of the QWS originates from overlapping Au 6p orbitals in the individual atoms and is unoccupied. Their characteristic is already reproduced with simple particle-in-a-box models that account for the symmetry of the islands (rectangular, triangular, or linear). However, better agreement is achieved when considering the true atomic structure of the aggregates via a densit…

Materials scienceCondensed matter physicsta114ElectronCondensed Matter PhysicsElectronic Optical and Magnetic Materialslaw.inventionQuantization (physics)Atomic orbitallawQuantum dotMolecular orbitalScanning tunneling microscopeThin filmSpectroscopy
researchProduct

Characterizing low-coordinated atoms at the periphery of MgO-supported Au islands using scanning tunneling microscopy and electronic structure calcul…

2010

The perimeter of oxide-supported metal particles is suggested to be of pivotal importance for various catalytic processes. To elucidate the underlying effects, the electronic properties of edge and corner atoms of planar Au clusters on MgO/Ag(001) thin films have been analyzed with scanning tunneling microscopy and electronic structure calculations. The low-coordinated perimeter atoms are characterized by a high density of $s$-derived states at the Fermi level. Those states accommodate transfer electrons from the MgO/Ag substrate, which render the perimeter atoms negatively charged. In contrast, the inner atoms of the island are not affected by the charge transfer and remain neutral. This c…

Materials scienceFermi levelScanning tunneling spectroscopyElectronElectronic structureSubstrate (electronics)Condensed Matter PhysicsMolecular physicsElectronic Optical and Magnetic Materialslaw.inventionsymbols.namesakeQuantum dotlawPhysics::Atomic and Molecular ClusterssymbolsCluster (physics)Atomic physicsScanning tunneling microscopePhysical Review B
researchProduct

Carbon Dioxide Activation and Reaction Induced by Electron Transfer at an Oxide-Metal Interface

2015

A model system has been created to shuttle electrons through a metal-insulator-metal (MIM) structure to induce the formation of a CO2 anion radical from adsorbed gas-phase carbon dioxide that subsequently reacts to form an oxalate species. The process is completely reversible, and thus allows the elementary steps involved to be studied at the atomic level. The oxalate species at the MIM interface have been identified locally by scanning tunneling microscopy, chemically by IR spectroscopy, and their formation verified by density functional calculations.

oxalateta114Inorganic chemistryOxidecarbon dioxideInfrared spectroscopychemistry.chemical_elementGeneral Chemistryelectron transferOxygenmetal-insulator-metal structureCatalysisOxalateIonlaw.inventionMetalElectron transferchemistry.chemical_compoundchemistrylawvisual_artvisual_art.visual_art_mediumScanning tunneling microscopeta116oxygenAngewandte Chemie International Edition
researchProduct

Gold/Isophorone Interaction Driven by Keto/Enol Tautomerization

2016

The binding behavior of isophorone (C9H14O) to Au adatoms and clusters deposited on MgO/Ag(001) thin films is investigated by scanning tunneling microscopy (STM) and density functional theory (DFT). The STM data reveal the formation of various metal/organic complexes, ranging from Au1/isophorone pairs to larger Au aggregates with molecules bound to their perimeter. DFT calculations find the energetically preferred keto-isophorone to be unreactive toward gold, while the enol-tautomer readily binds to Au monomers and clusters. The interaction is governed by electrostatic forces between the hydroxyl group of the enol and negative excess charges residing on the ad-gold. The activation barrier b…

010402 general chemistryPhotochemistry01 natural sciencesChemical reactionlaw.inventionchemistry.chemical_compoundlawketo-enol tautomerismgold compoundsMoleculePhysical and Theoretical Chemistryta116Isophoroneta114010405 organic chemistryKeto–enol tautomerismEnolTautomer0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsisophoroneGeneral EnergychemistryDensity functional theoryScanning tunneling microscopeJournal of Physical Chemistry C
researchProduct

Detailed photoluminescence study of vapor deposited Bi2S3 films of different surface morphology (Phys. Status Solidi B 11/2014)

2014

Surface (mathematics)PhotoluminescenceMorphology (linguistics)Materials scienceChemical engineeringNanotechnologyCondensed Matter PhysicsElectronic Optical and Magnetic Materialsphysica status solidi (b)
researchProduct

Quantum Well States in Two-Dimensional Gold Clusters on MgO Thin Films

2008

The electronic structure of ultra-small Au clusters on thin MgO/Ag(001) films has been analyzed by scanning tunneling spectroscopy and density functional theory. The clusters exhibit two-dimensional (2D) quantum well states, whose shapes resemble the eigen-states of a 2D electron gas confined in a parabolic potential. From the symmetries of the HOMO and LUMO of a particular cluster, its electron filling and charge state is determined. In accordance to a DFT Bader-charge analysis, aggregates containing up to twenty atoms accumulate one to four extra electrons due to a charge transfer from the MgO/Ag interface. The HOMO - LUMO gap is found to close for clusters containing between 70 and 100 a…

Condensed Matter - Materials ScienceMaterials scienceScanning tunneling spectroscopyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyElectronic structureElectronlaw.inventionQuantum dotlawPhysics::Atomic and Molecular ClustersCluster (physics)Density functional theoryAtomic physicsScanning tunneling microscopeHOMO/LUMOPhysical Review Letters
researchProduct

Aktivierung und Elektronentransfer-induzierte Reaktion von Kohlendioxid an einer Oxid-Metall-Grenzfläche

2015

Es wurde ein Modellsystem realisiert, das mittels Elektronentransfer durch eine Metall-Isolator-Metall(MIM)-Struktur die Bildung eines CO2-Radikalanions von aus der Gasphase adsorbiertem Kohlendioxid induziert, welches anschliesend zu Oxalat weiterreagiert. Dieser reversible Prozess gestattet eine Studie der involvierten Elementarschritte auf atomarer Ebene. Die Oxalatspezies an der MIM-Grenzflache wurden mithilfe der Rastertunnelmikroskopie untersucht, chemisch mittels Infrarotspektroskopie identifiziert und ihre Bildung durch Dichtefunktionalrechnungen verifiziert.

General MedicineAngewandte Chemie
researchProduct

Detailed photoluminescence study of vapor deposited Bi2S3 films of different surface morphology

2014

authorenWe present a temperature- and intensity-dependent photoluminescence (PL) study of the binary semiconductor on the mm-scale and a laterally resolved PL measurement with a resolution of nm. The films can show a rather rough surface with needles and flakes of with different orientations as well as very flat and smooth surface morphology. Despite a band gap of eV the films show a splitting of quasi-Fermi levels (QFL) of meV at room temperature. By means of temperature-dependent PL we have located several radiative and non-radiative defect states in the band gap. For a better understanding of this thin film semiconductor a full analysis of the laterally resolved PL measurement including …

Materials sciencePhotoluminescenceYield (engineering)Absorption spectroscopybusiness.industryBand gapCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsSemiconductorRadiative transferOptoelectronicsThin filmbusinessAbsorption (electromagnetic radiation)physica status solidi (b)
researchProduct

Electron quantization in arbitrarily shaped Au islands on MgO thin films

2013

Low-temperature scanning tunneling microscopy has been employed to analyze the formation of quantum well states (QWS) in two-dimensional gold islands, containing between 50 and 200 atoms, on MgO thin films. The energy position and symmetry of the eigenstates are revealed from conductance spectroscopy and imaging. The majority of the QWS originates from overlapping Au 6p orbitals in the individual atoms and is unoccupied. Their characteristic is already reproduced with simple particle-in-a-box models that account for the symmetry of the islands (rectangular, triangular, or linear). However, better agreement is achieved when considering the true atomic structure of the aggregates via a densit…

STMcomputational nanosciencedftelectronic structure simulations
researchProduct