0000000000014352

AUTHOR

Andrea De Lucia

Multiscale simulations of topological transformations in magnetic-skyrmion spin structures

Magnetic Skyrmions belong to the most interesting spin structures for the development of future information technology as they have been predicted to be topologically protected. To quantify their stability, we use an innovative multiscale approach to simulating spin dynamics based on the Landau-Lifshitz-Gilbert equation. The multiscale approach overcomes the micromagnetic limitations that have hindered realistic studies using conventional techniques. We first demonstrate how the stability of a Skyrmion is influenced by the refinement of the computational mesh and reveal that conventionally employed traditional micromagnetic simulations are inadequate for this task. Furthermore, we determine…

research product

Multiscale simulations of topological transformations in magnetic Skyrmions

Magnetic Skyrmions belong to the most interesting spin structures for the development of future information technology as they have been predicted to be topologically protected. To quantify their stability, we use an innovative multiscale approach to simulating spin dynamics based on the Landau-Lifshitz-Gilbert equation. The multiscale approach overcomes the micromagnetic limitations that have hindered realistic studies using conventional techniques. We first demonstrate how the stability of a Skyrmion is influenced by the refinement of the computational mesh and reveal that conventionally employed traditional micromagnetic simulations are inadequate for this task. Furthermore, we determine…

research product

Multiscale model approach for magnetization dynamics simulations

Simulations of magnetization dynamics in a multiscale environment enable the rapid evaluation of the Landau-Lifshitz-Gilbert equation in a mesoscopic sample with nanoscopic accuracy in areas where such accuracy is required. We have developed a multiscale magnetization dynamics simulation approach that can be applied to large systems with spin structures that vary locally on small length scales. To implement this, the conventional micromagnetic simulation framework has been expanded to include a multiscale solving routine. The software selectively simulates different regions of a ferromagnetic sample according to the spin structures located within in order to employ a suitable discretization…

research product