6533b7d5fe1ef96bd12645bf
RESEARCH PRODUCT
Multiscale simulations of topological transformations in magnetic-skyrmion spin structures
Mathias KläuiBenjamin KrügerOleg A. TretiakovAndrea De LuciaKai LitziusKai Litziussubject
PhysicsSkyrmion02 engineering and technologyMagnetic skyrmion021001 nanoscience & nanotechnology01 natural sciencesStability (probability)Computational meshPulse (physics)Current pulseDevelopment (topology)0103 physical sciencesStatistical physics010306 general physics0210 nano-technologySpin-½description
Magnetic Skyrmions belong to the most interesting spin structures for the development of future information technology as they have been predicted to be topologically protected. To quantify their stability, we use an innovative multiscale approach to simulating spin dynamics based on the Landau-Lifshitz-Gilbert equation. The multiscale approach overcomes the micromagnetic limitations that have hindered realistic studies using conventional techniques. We first demonstrate how the stability of a Skyrmion is influenced by the refinement of the computational mesh and reveal that conventionally employed traditional micromagnetic simulations are inadequate for this task. Furthermore, we determine the stability quantitatively using our multiscale approach. As a key operation for devices, the process of annihilating a Skyrmion by exciting it with a spin polarized current pulse is analyzed, showing that Skyrmions can be reliably deleted by designing the pulse shape.
year | journal | country | edition | language |
---|---|---|---|---|
2017-07-11 | Physical Review B |