0000000000014354
AUTHOR
Oleg A. Tretiakov
Multiscale simulations of topological transformations in magnetic-skyrmion spin structures
Magnetic Skyrmions belong to the most interesting spin structures for the development of future information technology as they have been predicted to be topologically protected. To quantify their stability, we use an innovative multiscale approach to simulating spin dynamics based on the Landau-Lifshitz-Gilbert equation. The multiscale approach overcomes the micromagnetic limitations that have hindered realistic studies using conventional techniques. We first demonstrate how the stability of a Skyrmion is influenced by the refinement of the computational mesh and reveal that conventionally employed traditional micromagnetic simulations are inadequate for this task. Furthermore, we determine…
Multiscale simulations of topological transformations in magnetic Skyrmions
Magnetic Skyrmions belong to the most interesting spin structures for the development of future information technology as they have been predicted to be topologically protected. To quantify their stability, we use an innovative multiscale approach to simulating spin dynamics based on the Landau-Lifshitz-Gilbert equation. The multiscale approach overcomes the micromagnetic limitations that have hindered realistic studies using conventional techniques. We first demonstrate how the stability of a Skyrmion is influenced by the refinement of the computational mesh and reveal that conventionally employed traditional micromagnetic simulations are inadequate for this task. Furthermore, we determine…
Multiscale model approach for magnetization dynamics simulations
Simulations of magnetization dynamics in a multiscale environment enable the rapid evaluation of the Landau-Lifshitz-Gilbert equation in a mesoscopic sample with nanoscopic accuracy in areas where such accuracy is required. We have developed a multiscale magnetization dynamics simulation approach that can be applied to large systems with spin structures that vary locally on small length scales. To implement this, the conventional micromagnetic simulation framework has been expanded to include a multiscale solving routine. The software selectively simulates different regions of a ferromagnetic sample according to the spin structures located within in order to employ a suitable discretization…
Spin texture motion in antiferromagnetic and ferromagnetic nanowires
We propose a Hamiltonian dynamics formalism for the current and magnetic field driven dynamics of ferromagnetic and antiferromagnetic domain walls in one dimensional systems. To demonstrate the power of this formalism, we derive Hamilton equations of motion via Poisson brackets based on the Landau-Lifshitz-Gilbert phenomenology, and add dissipative dynamics via the evolution of the energy. We use this approach to study current induced domain wall motion and compute the drift velocity. For the antiferromagnetic case, we show that a nonzero magnetic moment is induced in the domain wall, which indicates that an additional application of a magnetic field would influence the antiferromagnetic do…
Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy
Magnetic skyrmions are highly promising candidates for future spintronic applications such as skyrmion racetrack memories and logic devices. They exhibit exotic and complex dynamics governed by topology and are less influenced by defects, such as edge roughness, than conventionally used domain walls. In particular, their finite topological charge leads to a predicted "skyrmion Hall effect", in which current-driven skyrmions acquire a transverse velocity component analogous to charged particles in the conventional Hall effect. Here, we present nanoscale pump-probe imaging that for the first time reveals the real-time dynamics of skyrmions driven by current-induced spin orbit torque (SOT). We…