Search results for "Skyrmion"

showing 10 items of 74 documents

Trochoidal motion and pair generation in skyrmion and antiskyrmion dynamics under spin-orbit torques

2018

Magnetic skyrmions are swirling magnetic spin structures that could be used to build next-generation memory and logic devices. They can be characterized by a topological charge that describes how the spin winds around the core. The dynamics of skyrmions and antiskyrmions, which have opposite topological charges, are typically described by assuming a rigid core. However, this reduces the set of variables that describe skyrmion motion. Here we theoretically explore the dynamics of skyrmions and antiskyrmions in ultrathin ferromagnetic films and show that current-induced spin–orbit torques can lead to trochoidal motion and skyrmion–antiskyrmion pair generation, which occurs only for either the…

0301 basic medicineFOS: Physical sciences01 natural sciencesSpin magnetic moment03 medical and health sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesElectrical and Electronic Engineering010306 general physicsInstrumentationTopological quantum numberSpin-½PhysicsCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsSkyrmionDynamics (mechanics)Materials Science (cond-mat.mtrl-sci)Condensed Matter::Mesoscopic Systems and Quantum Hall EffectHelicitySymmetry (physics)[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Electronic Optical and Magnetic Materials030104 developmental biologyClassical mechanicsOrbit (dynamics)
researchProduct

Giant Dzyaloshinskii-Moriya Interaction and Room-Temperature Nanoscale Skyrmions in CoFeB/MgO Heterostructures

2021

Magnetic skyrmions in heavy metal (HM)/CoFeB/MgO structures are of particular interest for skyrmion-based magnetic tunnel junction (MTJ) devices because of their reliable generation, stability and read-out through purely electrical methods. To optimize the properties, such as stability, a strong Dzyaloshinskii-Moriya interaction (DMI) is required at room temperature. Here, using first-principles calculations, we demonstrate that giant DMI can be obtained in Ir/CoFe structures with an Fe-terminated configuration. Moreover, Brillouin light scattering measurements show that indeed Ta/Ir/Co20Fe60B20/MgO thin films with perpendicular magnetic anisotropy exhibit a large DMI value (1.13 mJ/m2), wh…

Brillouin zoneTunnel magnetoresistanceMaterials scienceCondensed matter physicsSkyrmionHeterojunctionThin filmMagnetic force microscopeNanoscopic scaleLight scatteringSSRN Electronic Journal
researchProduct

Bag models and hadron structure

2008

We review the fundamental ideas leading to the basic assumptions behind the bag model description of hadron structure and explore in some detail the so called MIT bag model. We discuss the relevance of chiral symmetry and incorporate it in a bag model scheme by adding a pion field. We show perturbative techniques of calculating gluonic and pionic effects. We discuss the consequences of the solitonic nature of the hedgehog solution of the pion field and introduce the skyrmion bag model. We end up by drawing some conclusions of our study and discussing recent developments in this area.

Chiral anomalyPhysicsModel descriptionParticle physicsPionField (physics)SkyrmionHigh Energy Physics::PhenomenologyNuclear TheoryStructure (category theory)Baryon numberChiral symmetry breaking
researchProduct

Perspective: Magnetic skyrmions—Overview of recent progress in an active research field

2018

Within a decade, the field of magnetic skyrmionics has developed from a niche prediction to a huge and active research field. Not only do magnetic skyrmions—magnetic whirls with a unique topology—reveal fundamentally new physics, but they have also risen to prominence as up-and-coming candidates for next-generation high-density efficient information encoding. Within a few years, it has been possible to efficiently create, manipulate, and destroy nanometer-size skyrmions in device-compatible materials at room-temperature by all electrical means. Despite the incredibly rapid progress, several challenges still remain to obtain fully functional and competitive skyrmion devices, as discussed in …

Computer scienceSkyrmion0103 physical sciencesPerspective (graphical)General Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology010306 general physics0210 nano-technology01 natural sciencesData scienceField (computer science)Journal of Applied Physics
researchProduct

Commensurability between Element Symmetry and the Number of Skyrmions Governing Skyrmion Diffusion in Confined Geometries

2020

Magnetic skyrmions are topological magnetic structures, which exhibit quasi-particle properties and can show enhanced stability against perturbation from thermal noise. Recently, thermal Brownian diffusion of these quasi-particles has been found in continuous films and applications in unconventional computing have received significant attention, which however require structured elements. Thus, as the next necessary step, we here study skyrmion diffusion in confined geometries and find it to be qualitatively different: The diffusion is governed by the interplay between the total number of skyrmions and the structure geometry. In particular, we ascertain the effect of circular and triangular …

Condensed Matter - Materials ScienceMaterials scienceCondensed matter physics530 PhysicsSkyrmionPerturbation (astronomy)Materials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologyMagnetic skyrmion010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics530 Physik01 natural sciencesCommensurability (mathematics)Symmetry (physics)0104 chemical sciencesElectronic Optical and Magnetic MaterialsBiomaterialsThermalElectrochemistryDiffusion (business)0210 nano-technologyBrownian motionAdvanced Functional Materials
researchProduct

Effect of boundary-induced chirality on magnetic textures in thin films

2018

In the quest for miniaturizing magnetic devices, the effects of boundaries and surfaces become increasingly important. Here we show how the recently predicted boundary-induced Dzyaloshinskii-Moriya interaction (DMI) affects the magnetization of ferromagnetic films with a $C_{\infty v}$ symmetry and a perpendicular magnetic anisotropy. For an otherwise uniformly magnetized film, we find a surface twist when the magnetization in the bulk is canted by an in-plane external field. This twist at the surfaces caused by the boundary-induced DMI differs from the common canting caused by internal DMI observed at the edges of a chiral magnet. Further, we find that the surface twist due to the boundary…

Condensed Matter - Materials ScienceMaterials scienceCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsSkyrmionPhysicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologyRadiusPhysik (inkl. Astronomie)021001 nanoscience & nanotechnology01 natural sciencesSymmetry (physics)MagnetizationDomain wall (magnetism)FerromagnetismMagnetMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesTwist010306 general physics0210 nano-technology
researchProduct

Skyrmion Lattice Phases in Thin Film Multilayer

2020

Phases of matter are ubiquitous with everyday examples including solids and liquids. In reduced dimensions, particular phases, such as the two-dimensional (2D) hexatic phase and corresponding phase transitions occur. A particularly exciting example of 2D ordered systems are skyrmion lattices, where in contrast to previously studied 2D colloid systems, the skyrmion size and density can be tuned by temperature and magnetic field. This allows us to drive the system from a liquid phase to a hexatic phase as deduced from the analysis of the hexagonal order. Using coarse-grained molecular dynamics simulations of soft disks, we determine the skyrmion interaction potentials and we find that the sim…

Condensed Matter - Materials SciencePhase transitionMaterials scienceCondensed matter physicsSkyrmionMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0104 chemical sciencesElectronic Optical and Magnetic MaterialsMagnetic fieldBiomaterialsMolecular dynamicsColloidLattice (order)Phase (matter)Electrochemistry0210 nano-technologyHexatic phaseAdvanced Functional Materials
researchProduct

Magnetic Direct-Write Skyrmion Nanolithography

2020

Magnetic skyrmions are stable spin textures with quasi-particle behavior and attract significant interest in fundamental and applied physics. The metastability of magnetic skyrmions at zero magnetic field is particularly important to enable, for instance, a skyrmion racetrack memory. Here, the results of the nucleation of stable skyrmions and formation of ordered skyrmion lattices by magnetic force microscopy in (Pt/CoFeSiB/W)n multilayers, exploiting the additive effect of the interfacial Dzyaloshinskii-Moriya interaction, are presented. The appropriate conditions under which skyrmion lattices are confined with a dense two-dimensional liquid phase are identified. A crucial parameter to con…

Condensed Matter::Quantum GasesPhysicsApplied physicsCondensed matter physicsSkyrmionHigh Energy Physics::PhenomenologyGeneral EngineeringNucleationGeneral Physics and Astronomy02 engineering and technologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesMagnetic fieldNanolithographyLattice (order)MetastabilityGeneral Materials ScienceMagnetic force microscope0210 nano-technologyNonlinear Sciences::Pattern Formation and SolitonsACS Nano
researchProduct

Spin-transfer torque driven motion, deformation, and instabilities of magnetic skyrmions at high currents

2020

In chiral magnets, localized topological magnetic whirls, magnetic skyrmions, can be moved by spin polarized electric currents. Upon increasing the current strength, with prospects for high-speed skyrmion motion for spintronics applications in mind, isolated skyrmions deform away from their typical circular shape. We analyze the influence of spin-transfer torques on the shape of a single skyrmion, including its stability upon adiabatically increasing the strength of the applied electric current. For rather compact skyrmions at uniaxial anisotropies well above the critical anisotropy for domain wall formation, we find for high current densities that the skyrmion assumes a non-circular shape …

Condensed Matter::Quantum GasesPhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsSpintronicsSkyrmionHigh Energy Physics::PhenomenologySpin-transfer torqueFOS: Physical sciences02 engineering and technologyPhysik (inkl. Astronomie)Condensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter - Strongly Correlated ElectronsDomain wall (magnetism)MagnetMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesElectric current010306 general physics0210 nano-technologyAnisotropySpin-½Physical Review B
researchProduct

Thin Film Skyrmionics

2022

In condensed matter physics, magnetic skyrmions, topologically stabilized magnetic solitons, have been discovered in various materials systems, which has intrigued the community in terms of not only fundamental physics but also with respect to engineering applications. In particular, skyrmions in thin films are easily manipulable by electrical means even at room temperature. Concomitantly, a variety of possible applications have been proposed and proof-of-concept devices have been demonstrated. Recently, the field of skyrmion-based electronics has been referred to as skyrmionics and this field has been rapidly growing and extended in multiple directions. This review provides recent progres…

Condensed Matter::Quantum GasesPhysicsCondensed matter physicsSkyrmionGeneral Materials ScienceThin filmCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsAnnual Review of Condensed Matter Physics
researchProduct