6533b830fe1ef96bd1297d28
RESEARCH PRODUCT
Skyrmion Lattice Phases in Thin Film Multilayer
Klaus RaabFlorian DittrichYuqing GeJakub ZázvorkaJakub ZázvorkaNico KerberThomas WinklerPeter VirnauKai LitziusKai LitziusMartin VeisMathias Kläuisubject
Condensed Matter - Materials SciencePhase transitionMaterials scienceCondensed matter physicsSkyrmionMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0104 chemical sciencesElectronic Optical and Magnetic MaterialsMagnetic fieldBiomaterialsMolecular dynamicsColloidLattice (order)Phase (matter)Electrochemistry0210 nano-technologyHexatic phasedescription
Phases of matter are ubiquitous with everyday examples including solids and liquids. In reduced dimensions, particular phases, such as the two-dimensional (2D) hexatic phase and corresponding phase transitions occur. A particularly exciting example of 2D ordered systems are skyrmion lattices, where in contrast to previously studied 2D colloid systems, the skyrmion size and density can be tuned by temperature and magnetic field. This allows us to drive the system from a liquid phase to a hexatic phase as deduced from the analysis of the hexagonal order. Using coarse-grained molecular dynamics simulations of soft disks, we determine the skyrmion interaction potentials and we find that the simulations are able to reproduce the full two-dimensional phase behavior. This shows that not only the static behavior of skyrmions is qualitatively well described in terms of a simple two-dimensional model system but skyrmion lattices are versatile and tunable two-dimensional model systems that allow for studying phases and phase transitions in reduced dimensions.
year | journal | country | edition | language |
---|---|---|---|---|
2020-04-14 | Advanced Functional Materials |