0000000000559312

AUTHOR

Florian Dittrich

showing 4 related works from this author

Critical behavior of active Brownian particles

2017

We study active Brownian particles as a paradigm for a genuine nonequilibrium phase transition requiring steady driving. Access to the critical point in computer simulations is obstructed by the fact that the density is conserved. We propose a method based on arguments from finite-size scaling to determine critical points and successfully test it for the two-dimensional (2D) Ising model. Using this method allows us to accurately determine the critical point of two-dimensional active Brownian particles at ${\mathrm{Pe}}_{\text{cr}}=40(2), {\ensuremath{\phi}}_{\text{cr}}=0.597(3)$. Based on this estimate, we study the corresponding critical exponents $\ensuremath{\beta}, \ensuremath{\gamma}/\…

PhysicsPhase transitionNon-equilibrium thermodynamicsFOS: Physical sciences02 engineering and technologyRenormalization groupCondensed Matter - Soft Condensed Matter021001 nanoscience & nanotechnology01 natural sciencesCritical point (mathematics)0103 physical sciencesSoft Condensed Matter (cond-mat.soft)Ising model010306 general physics0210 nano-technologyScalingCritical exponentBrownian motionMathematical physics
researchProduct

Skyrmion Lattice Phases in Thin Film Multilayer

2020

Phases of matter are ubiquitous with everyday examples including solids and liquids. In reduced dimensions, particular phases, such as the two-dimensional (2D) hexatic phase and corresponding phase transitions occur. A particularly exciting example of 2D ordered systems are skyrmion lattices, where in contrast to previously studied 2D colloid systems, the skyrmion size and density can be tuned by temperature and magnetic field. This allows us to drive the system from a liquid phase to a hexatic phase as deduced from the analysis of the hexagonal order. Using coarse-grained molecular dynamics simulations of soft disks, we determine the skyrmion interaction potentials and we find that the sim…

Condensed Matter - Materials SciencePhase transitionMaterials scienceCondensed matter physicsSkyrmionMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0104 chemical sciencesElectronic Optical and Magnetic MaterialsMagnetic fieldBiomaterialsMolecular dynamicsColloidLattice (order)Phase (matter)Electrochemistry0210 nano-technologyHexatic phaseAdvanced Functional Materials
researchProduct

Commensurability between Element Symmetry and the Number of Skyrmions Governing Skyrmion Diffusion in Confined Geometries

2020

Magnetic skyrmions are topological magnetic structures, which exhibit quasi-particle properties and can show enhanced stability against perturbation from thermal noise. Recently, thermal Brownian diffusion of these quasi-particles has been found in continuous films and applications in unconventional computing have received significant attention, which however require structured elements. Thus, as the next necessary step, we here study skyrmion diffusion in confined geometries and find it to be qualitatively different: The diffusion is governed by the interplay between the total number of skyrmions and the structure geometry. In particular, we ascertain the effect of circular and triangular …

Condensed Matter - Materials ScienceMaterials scienceCondensed matter physics530 PhysicsSkyrmionPerturbation (astronomy)Materials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologyMagnetic skyrmion010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics530 Physik01 natural sciencesCommensurability (mathematics)Symmetry (physics)0104 chemical sciencesElectronic Optical and Magnetic MaterialsBiomaterialsThermalElectrochemistryDiffusion (business)0210 nano-technologyBrownian motionAdvanced Functional Materials
researchProduct

Magnetic Direct-Write Skyrmion Nanolithography

2020

Magnetic skyrmions are stable spin textures with quasi-particle behavior and attract significant interest in fundamental and applied physics. The metastability of magnetic skyrmions at zero magnetic field is particularly important to enable, for instance, a skyrmion racetrack memory. Here, the results of the nucleation of stable skyrmions and formation of ordered skyrmion lattices by magnetic force microscopy in (Pt/CoFeSiB/W)n multilayers, exploiting the additive effect of the interfacial Dzyaloshinskii-Moriya interaction, are presented. The appropriate conditions under which skyrmion lattices are confined with a dense two-dimensional liquid phase are identified. A crucial parameter to con…

Condensed Matter::Quantum GasesPhysicsApplied physicsCondensed matter physicsSkyrmionHigh Energy Physics::PhenomenologyGeneral EngineeringNucleationGeneral Physics and Astronomy02 engineering and technologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesMagnetic fieldNanolithographyLattice (order)MetastabilityGeneral Materials ScienceMagnetic force microscope0210 nano-technologyNonlinear Sciences::Pattern Formation and SolitonsACS Nano
researchProduct