0000000000365061
AUTHOR
Jakub Zázvorka
Magnetic Skyrmions: Current-Induced Skyrmion Generation through Morphological Thermal Transitions in Chiral Ferromagnetic Heterostructures (Adv. Mater. 49/2018)
Current-Induced Skyrmion Generation through Morphological Thermal Transitions in Chiral Ferromagnetic Heterostructures.
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Magnetic skyrmions promise breakthroughs in future memory and computing devices due to their inherent stability and small size. Their creation and current driven motion have been recently observed at room temperature, but the key mechanisms of their formation are not yet well-understood. Here it is shown that in heavy metal/ferromagnet heterostructures, pulsed currents can drive morphological transitions between labyrinth-like, stripe-like, and skyrmionic states. Using high-resolution X-ray microscopy, the spin texture evolution with temperature and magnetic field is imaged and it is demonstrated that with transient Joule heating, topologica…
Skyrmion pinning energetics in thin film systems
AbstractA key issue for skyrmion dynamics and devices are pinning effects present in real systems. While posing a challenge for the realization of conventional skyrmionics devices, exploiting pinning effects can enable non-conventional computing approaches if the details of the pinning in real samples are quantified and understood. We demonstrate that using thermal skyrmion dynamics, we can characterize the pinning of a sample and we ascertain the spatially resolved energy landscape. To understand the mechanism of the pinning, we probe the strong skyrmion size and shape dependence of the pinning. Magnetic microscopy imaging demonstrates that in contrast to findings in previous investigation…
Skyrmion Lattice Phases in Thin Film Multilayer
Phases of matter are ubiquitous with everyday examples including solids and liquids. In reduced dimensions, particular phases, such as the two-dimensional (2D) hexatic phase and corresponding phase transitions occur. A particularly exciting example of 2D ordered systems are skyrmion lattices, where in contrast to previously studied 2D colloid systems, the skyrmion size and density can be tuned by temperature and magnetic field. This allows us to drive the system from a liquid phase to a hexatic phase as deduced from the analysis of the hexagonal order. Using coarse-grained molecular dynamics simulations of soft disks, we determine the skyrmion interaction potentials and we find that the sim…
Anisotropic skyrmion diffusion controlled by magnetic-field-induced symmetry breaking
The diffusion of particles has wide repercussions, ranging from particle-based soft-matter systems to solid-state systems with particular electronic properties. Recently, in the field of magnetism, the diffusion of magnetic skyrmions, topologically stabilized quasiparticles, has been demonstrated. Here, we show that, by applying a magnetic in-plane field, and therefore, breaking the symmetry of the system, skyrmion diffusion becomes anisotropic, with faster diffusion parallel to the field axis and slower diffusion perpendicular to it. We furthermore show that the absolute value of the applied magnetic in-plane field controls the absolute values of the diffusion coefficients, so that one can…
Imaging Topological Spin Structures Using Light-Polarization and Magnetic Microscopy
We present an imaging modality that enables detection of magnetic moments and their resulting stray magnetic fields. We use wide-field magnetic imaging that employs a diamond-based magnetometer and has combined magneto-optic detection (e.g. magneto-optic Kerr effect) capabilities. We employ such an instrument to image magnetic (stripe) domains in multilayered ferromagnetic structures.