Cyclooxygenase-2 inhibition induces apoptosis signaling via death receptors and mitochondria in hepatocellular carcinoma.
AbstractInhibition of cyclooxygenase (COX)-2 elicits chemopreventive and therapeutic effects in solid tumors that are coupled with the induction of apoptosis in tumor cells. We investigated the mechanisms by which COX-2 inhibition induces apoptosis in hepatocellular carcinoma (HCC) cells. COX-2 inhibition triggered expression of the CD95, tumor necrosis factor (TNF)-R, and TNF-related apoptosis-inducing ligand (TRAIL)-R1 and TRAIL-R2 death receptors. Addition of the respective specific ligands further increased apoptosis, indicating that COX-2 inhibition induced the expression of functional death receptors. Overexpression of a dominant-negative Fas-associated death domain mutant reduced COX…
Thiocolchicoside a semi-synthetic derivative of the Glory Lily: a new weapon to fight metastatic bone resorption?
Metastatic bone disease is a serious clinical complication for the treatment of patients with advanced cancer, but few therapeutic options are currently available. Bisphosphonates are an established standard care for these patients, but new treatments are now emerging, including the use of monoclonal antibodies targeting the RANK ligand. In this issue of the BJP, Reuter et al. provide evidence that thiocolchicoside, a semi-synthetic derivative of the naturally occurring colchicoside, extracted from the seeds of Gloriosa superba (Liliaceae), prevented osteoclactogenesis by suppressing RANK ligand-mediated NF-κB activation. Thiolcolchicoside may thus represent an attractive therapeutic option…
cFLIPL Inhibits Tumor Necrosis Factor-related Apoptosis-inducing Ligand-mediated NF-κB Activation at the Death-inducing Signaling Complex in Human Keratinocytes
Human keratinocytes undergo apoptosis following treatment with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) via surface-expressed TRAIL receptors 1 and 2. In addition, TRAIL triggers nonapoptotic signaling pathways including activation of the transcription factor NF-kappaB, in particular when TRAIL-induced apoptosis is blocked. The intracellular protein cFLIP(L) interferes with TRAIL-induced apoptosis at the death-inducing signaling complex (DISC) in many cell types. To study the role of cFLIP(L) in TRAIL signaling, we established stable HaCaT keratinocyte cell lines expressing varying levels of cFLIP(L). Functional analysis revealed that relative cFLIP(L) levels correlat…
Essential versus accessory aspects of cell death: recommendations of the NCCD 2015
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ?accidental cell death' (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. "Regulated cell death" (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to…
CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes
Azathioprine and its metabolite 6-mercaptopurine (6-MP) are immunosuppressive drugs that are used in organ transplantation and autoimmune and chronic inflammatory diseases such as Crohn disease. However, their molecular mechanism of action is unknown. In the present study, we have identified a unique and unexpected role for azathioprine and its metabolites in the control of T cell apoptosis by modulation of Rac1 activation upon CD28 costimulation. We found that azathioprine and its metabolites induced apoptosis of T cells from patients with Crohn disease and control patients. Apoptosis induction required costimulation with CD28 and was mediated by specific block- ade of Rac1 activation thro…
A dual role of caspase-8 in triggering and sensing proliferation-associated DNA damage, a key determinant of liver cancer development.
Summary Concomitant hepatocyte apoptosis and regeneration is a hallmark of chronic liver diseases (CLDs) predisposing to hepatocellular carcinoma (HCC). Here, we mechanistically link caspase-8-dependent apoptosis to HCC development via proliferation- and replication-associated DNA damage. Proliferation-associated replication stress, DNA damage, and genetic instability are detectable in CLDs before any neoplastic changes occur. Accumulated levels of hepatocyte apoptosis determine and predict subsequent hepatocarcinogenesis. Proliferation-associated DNA damage is sensed by a complex comprising caspase-8, FADD, c-FLIP, and a kinase-dependent function of RIPK1. This platform requires a non-apop…
Apoptosis resistance in epithelial tumors is mediated by tumor-cell-derived interleukin-4
We investigated the mechanisms involved in the resistance to cell death observed in epithelial cancers. Here, we identify that primary epithelial cancer cells from colon, breast and lung carcinomas express high levels of the antiapoptotic proteins PED, cFLIP, Bcl-xL and Bcl-2. These cancer cells produced interleukin-4 (IL-4), which amplified the expression levels of these antiapoptotic proteins and prevented cell death induced upon exposure to TRAIL or other drug agents. IL-4 blockade resulted in a significant decrease in the growth rate of epithelial cancer cells and sensitized them, both in vitro and in vivo, to apoptosis induction by TRAIL and chemotherapy via downregulation of the antia…