Jakimovski–Leviatan operators of Kantorovich type involving multiple Appell polynomials
Abstract The purpose of the present paper is to obtain the degree of approximation in terms of a Lipschitz type maximal function for the Kantorovich type modification of Jakimovski–Leviatan operators based on multiple Appell polynomials. Also, we study the rate of approximation of these operators in a weighted space of polynomial growth and for functions having a derivative of bounded variation. A Voronvskaja type theorem is obtained. Further, we illustrate the convergence of these operators for certain functions through tables and figures using the Maple algorithm and, by a numerical example, we show that our Kantorovich type operator involving multiple Appell polynomials yields a better r…
Convergence Properties of Genuine Bernstein–Durrmeyer Operators
The genuine Bernstein–Durrmeyer operators have notable approximation properties, and many papers have been written on them. In this paper, we introduce a modified genuine Bernstein–Durrmeyer operators. Some approximation results, which include local approximation, error estimation in terms of the modulus of continuity and weighted approximation is obtained. Also, a quantitative Voronovskaya-type approximation will be studied. The convergence of these operators to certain functions is shown by illustrative graphics using MAPLE algorithms.
Approximation properties of λ ‐Bernstein‐Kantorovich operators with shifted knots
Bivariate Grüss-Type Inequalities for Positive Linear Operators
Better numerical approximation by Durrmeyer type operators
The main object of this paper is to construct new Durrmeyer type operators which have better features than the classical one. Some results concerning the rate of convergence and asymptotic formulas of the new operator are given. Finally, the theoretical results are analyzed by numerical examples.
Generalized Alomari functionals
We consider a generalized form of certain integral inequalities given by Guessab, Schmeisser and Alomari. The trapezoidal, mid point, Simpson, Newton-Simpson rules are obtained as special cases. Also, inequalities for the generalized Alomari functional in terms of the $n$-th order modulus, $n=\overline{1,4}$, are given and applied to some known quadrature rules.
Approximation by Certain Operators Linking the $$\alpha $$-Bernstein and the Genuine $$\alpha $$-Bernstein–Durrmeyer Operators
This paper presents a new family of operators which constitute the link between \(\alpha \)-Bernstein operators and genuine \(\alpha \)-Bernstein–Durrmeyer operators. Some approximation results, which include local approximation and error estimation in terms of the modulus of continuity are given. Finally, a quantitative Voronovskaya type theorem is established and some Gruss type inequalities are obtained.
Voronovskaya type results and operators fixing two functions
The present paper deals with positive linear operators which fix two functions. The transfer of a given sequence (Ln) of positive linear operators to a new sequence (Kn) is investigated. A general procedure to construct sequences of positive linear operators fixing two functions which form an Extended Complete Chebyshev system is described. The Voronovskaya type formula corresponding to the new sequence which is strongly influenced by the nature of the fixed functions is obtained. In the last section our results are compared with other results existing in literature.
Baskakov‐Durrmeyer type operators involving generalized Appell Polynomials
Moment Generating Functions and Central Moments
This section deals with the moment generating functions (m.g.f.) up to sixth order of some discretely defined operators. We mention the m.g.f. and express them in expanded form to obtain moments, which are important in the theory of approximation relevant to problems of convergence.
Geometric Brownian Motion (GBM) of Stock Indexes and Financial Market Uncertainty in the Context of Non-Crisis and Financial Crisis Scenarios
The present article proposes a methodology for modeling the evolution of stock market indexes for 2020 using geometric Brownian motion (GBM), but in which drift and diffusion are determined considering two states of economic conjunctures (states of the economy), i.e., non-crisis and financial crisis. Based on this approach, we have found that the GBM proved to be a suitable model for making forecasts of stock market index values, as it describes quite well their future evolution. However, the model proposed by us, modified geometric Brownian motion (mGBM), brings some contributions that better describe the future evolution of stock indexes. Evidence in this regard was provided by analyzing …
Strong Converse Results for Linking Operators and Convex Functions
We consider a family B n , ρ c of operators which is a link between classical Baskakov operators (for ρ = ∞ ) and their genuine Durrmeyer type modification (for ρ = 1 ). First, we prove that for fixed n , c and a fixed convex function f , B n , ρ c f is decreasing with respect to ρ . We give two proofs, using various probabilistic considerations. Then, we combine this property with some existing direct and strong converse results for classical operators, in order to get such results for the operators B n , ρ c applied to convex functions.
Some approximation properties of ( p , q ) $(p,q)$ -Bernstein operators
This paper is concerned with the $(p,q)$ -analog of Bernstein operators. It is proved that, when the function is convex, the $(p,q)$ -Bernstein operators are monotonic decreasing, as in the classical case. Also, some numerical examples based on Maple algorithms that verify these properties are considered. A global approximation theorem by means of the Ditzian-Totik modulus of smoothness and a Voronovskaja type theorem are proved.
Approximation properties of λ-Kantorovich operators
In the present paper, we study a new type of Bernstein operators depending on the parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda\in[-1,1]$\end{document}λ∈[−1,1]. The Kantorovich modification of these sequences of linear positive operators will be considered. A quantitative Voronovskaja type theorem by means of Ditzian–Totik modulus of smoothness is proved. Also, a Grüss–Voronovskaja type theorem for λ-Kantorovich operators is provided. Some numerical examples which show the relevance of the res…
Some approximation properties by a class of bivariate operators
WOS: 000503431300041
Yet Another New Variant of Szász–Mirakyan Operator
In this paper, we construct a new variant of the classical Szász–Mirakyan operators, Mn, which fixes the functions 1 and eax,x≥0,a∈R. For these operators, we provide a quantitative Voronovskaya-type result. The uniform weighted convergence of Mn and a direct quantitative estimate are obtained. The symmetry of the properties of the classical Szász–Mirakyan operator and of the properties of the new sequence is investigated. Our results improve and extend similar ones on this topic, established in the last decade by many authors.
Ulam Stability for the Composition of Operators
Working in the setting of Banach spaces, we give a simpler proof of a result concerning the Ulam stability of the composition of operators. Several applications are provided. Then, we give an example of a discrete semigroup with Ulam unstable members and an example of Ulam stable operators on a Banach space, such that their sum is not Ulam stable. Another example is concerned with a C 0 -semigroup ( T t ) t &ge
Approximation Properties of the Modified Stancu Operators
ABSTRACTIn this article we construct a sequence of Stancu-type operators that are based on a function τ. This function is any function on [0,1] continuously differentiable ∞ times, such that τ(0) =...
Some approximation properties of a Durrmeyer variant ofq-Bernstein-Schurer operators
Estimates for the Differences of Certain Positive Linear Operators
The present paper deals with estimates for differences of certain positive linear operators defined on bounded or unbounded intervals. Our approach involves Baskakov type operators, the kth order Kantorovich modification of the Baskakov operators, the discrete operators associated with Baskakov operators, Meyer&ndash
Stancu–Schurer–Kantorovich operators based on q-integers
The goal of this paper is to introduce and study q analogue of Stancu-Schurer-Kantorovich operators. A convergence theorem using the well known Bohman-Korovkin criterion is proven and the rate of convergence involving the modulus of continuity is established. The estimate of the rate of convergence by means of the Lipshitz function is considered. Furthermore, we obtained a Voronovskaja type result for these operators. Also, we investigate the statistical approximation properties of these operators using Korovkin type statistical approximation theorem.
The uniform convergence of a double sequence of functions at a point and Korovkin-type approximation theorems
Abstract In this paper, we introduce an interesting kind of convergence for a double sequence called the uniform convergence at a point. We give an example and demonstrate a Korovkin-type approximation theorem for a double sequence of functions using the uniform convergence at a point. Then we show that our result is stronger than the Korovkin theorem given by Volkov and present several graphs. Finally, in the last section, we compute the rate of convergence.
Elementary hypergeometric functions, Heun functions, and moments of MKZ operators
We consider some hypergeometric functions and prove that they are elementary functions. Consequently, the second order moments of Meyer-Konig and Zeller type operators are elementary functions. The higher order moments of these operators are expressed in terms of elementary functions and polylogarithms. Other applications are concerned with the expansion of certain Heun functions in series or finite sums of elementary hypergeometric functions.
Univariate Grüss- and Ostrowski-Type Inequalities for Positive Linear Operators
Approximation properties of q-Kantorovich-Stancu operator
In this paper we study some properties of Kantorovich-type generalizations of the q-Stancu operators. We obtain some approximation properties for these operators, estimating the rate of convergence by using the first and second modulus of continuity. Also, we investigate the statistical approximation properties of the q-Kantorovich-Stancu operators using the Korovkin-type statistical approximation theorem.
Certain positive linear operators with better approximation properties
Better approximation of functions by genuine Bernstein-Durrmeyer type operators
The main object of this paper is to construct a new genuine Bernstein-Durrmeyer type operators which have better features than the classical one. Some direct estimates for the modified genuine Bernstein-Durrmeyer operator by means of the first and second modulus of continuity are given. An asymptotic formula for the new operator is proved. Finally, some numerical examples with illustrative graphics have been added to validate the theoretical results and also compare the rate of convergence.
Inequalities for Information Potentials and Entropies
We consider a probability distribution p0(x),p1(x),&hellip
Information potential for some probability density functions
Abstract This paper is related to the information theoretic learning methodology, whose goal is to quantify global scalar descriptors (e.g., entropy) of a given probability density function (PDF). In this context, the core concept is the information potential (IP) S [ s ] ( x ) : = ∫ R p s ( t , x ) d t , s > 0 of a PDF p(t, x) depending on a parameter x; it is naturally related to the Renyi and Tsallis entropies. We present several such PDF, viewed also as kernels of integral operators, for which a precise relation exists between S[2](x) and the variance Var[p(t, x)]. For these PDF we determine explicitly the IP and the Shannon entropy. As an application to Information Theoretic Learning w…
Convergence of GBS Operators
In [59, 60], Bogel introduced a new concept of Bogel-continuous and Bogel-differentiable functions and also established some important theorems using these concepts. Dobrescu and Matei [80] showed the convergence of the Boolean sum of bivariate generalization of Bernstein polynomials to the B-continuous function on a bounded interval. Subsequently, Badea and Cottin [46] obtained Korovkin theorems for GBS operators.
Estimates for the Differences of Positive Linear Operators
Book Review: Approximation with Positive Linear Operators and Linear Combinations By: Vijay Gupta, Gancho Tachev Series: Developments in Mathematics, Volume 50, Springer, Cham, 2017
Basics of Post-quantum Calculus
A C0-Semigroup of Ulam Unstable Operators
The Ulam stability of the composition of two Ulam stable operators has been investigated by several authors. Composition of operators is a key concept when speaking about C0-semigroups. Examples of C0-semigroups formed with Ulam stable operators are known. In this paper, we construct a C0-semigroup (Rt)t&ge
Modified Operators Interpolating at Endpoints
Some classical operators (e.g., Bernstein) preserve the affine functions and consequently interpolate at the endpoints. Other classical operators (e.g., Bernstein–Durrmeyer) have been modified in order to preserve the affine functions. We propose a simpler modification with the effect that the new operators interpolate at endpoints although they do not preserve the affine functions. We investigate the properties of these modified operators and obtain results concerning iterates and their limits, Voronovskaja-type results and estimates of several differences.
Approximation of Baskakov type Pólya–Durrmeyer operators
In the present paper we propose the Durrmeyer type modification of Baskakov operators based on inverse Polya-Eggenberger distribution. First we estimate a recurrence relation by using hypergeometric series. We give a global approximation theorem in terms of second order modulus of continuity, a direct approximation theorem by means of the Ditzian-Totik modulus of smoothness and a Voronovskaja type theorem. Some approximation results in weighted space are obtained. Also, we show the rate of convergence of these operators to certain functions by illustrative graphics using the Maple algorithms.
Estimates for the differences of positive linear operators and their derivatives
The present paper deals with the estimate of the differences of certain positive linear operators and their derivatives. Oxur approach involves operators defined on bounded intervals, as Bernstein operators, Kantorovich operators, genuine Bernstein-Durrmeyer operators, and Durrmeyer operators with Jacobi weights. The estimates in quantitative form are given in terms of the first modulus of continuity. In order to analyze the theoretical results in the last section, we consider some numerical examples.
New results concerning Chebyshev–Grüss-type inequalities via discrete oscillations
The classical form of Gruss' inequality was first published by G. Gruss and gives an estimate of the difference between the integral of the product and the product of the integrals of two functions. In the subsequent years, many variants of this inequality appeared in the literature. The aim of this paper is to consider some new bivariate Chebyshev-Gruss-type inequalities via discrete oscillations and to apply them to different tensor products of linear (not necessarily) positive, well-known operators. We also compare the new inequalities with some older results. In the end we give a Chebyshev-Gruss-type inequality with discrete oscillations for more than two functions.
Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion
In this article, we propose a test of the dynamics of stock market indexes typical of the US and EU capital markets in order to determine which of the two fundamental hypotheses, efficient market hypothesis (EMH) or fractal market hypothesis (FMH), best describes market behavior. The article’s major goal is to show how to appropriately model return distributions for financial market indexes, specifically which geometric Brownian motion (GBM) and geometric fractional Brownian motion (GFBM) dynamic equations best define the evolution of the S&P 500 and Stoxx Europe 600 stock indexes. Daily stock index data were acquired from the Thomson Reuters Eikon database during a ten-year period, fro…
Perturbed Bernstein-type operators
The present paper deals with modifications of Bernstein, Kantorovich, Durrmeyer and genuine Bernstein-Durrmeyer operators. Some previous results are improved in this study. Direct estimates for these operators by means of the first and second modulus of continuity are given. Also the asymptotic formulas for the new operators are proved.