6533b862fe1ef96bd12c74e4

RESEARCH PRODUCT

Approximation of Baskakov type Pólya–Durrmeyer operators

Ana Maria AcuVijay GuptaDaniel Florin Sofonea

subject

Recurrence relationApplied Mathematics010102 general mathematicsMathematical analysisInverse010103 numerical & computational mathematics01 natural sciencesModulus of continuityComputational MathematicsDistribution (mathematics)Baskakov operatorRate of convergenceApplied mathematics0101 mathematicsHypergeometric functionMathematicsWeighted space

description

In the present paper we propose the Durrmeyer type modification of Baskakov operators based on inverse Polya-Eggenberger distribution. First we estimate a recurrence relation by using hypergeometric series. We give a global approximation theorem in terms of second order modulus of continuity, a direct approximation theorem by means of the Ditzian-Totik modulus of smoothness and a Voronovskaja type theorem. Some approximation results in weighted space are obtained. Also, we show the rate of convergence of these operators to certain functions by illustrative graphics using the Maple algorithms.

https://doi.org/10.1016/j.amc.2016.09.012