0000000000624589

AUTHOR

Daniel Florin Sofonea

Approximation properties of λ-Kantorovich operators

In the present paper, we study a new type of Bernstein operators depending on the parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda\in[-1,1]$\end{document}λ∈[−1,1]. The Kantorovich modification of these sequences of linear positive operators will be considered. A quantitative Voronovskaja type theorem by means of Ditzian–Totik modulus of smoothness is proved. Also, a Grüss–Voronovskaja type theorem for λ-Kantorovich operators is provided. Some numerical examples which show the relevance of the res…

research product

Some approximation properties of a Durrmeyer variant ofq-Bernstein-Schurer operators

research product

Certain positive linear operators with better approximation properties

research product

Approximation of Baskakov type Pólya–Durrmeyer operators

In the present paper we propose the Durrmeyer type modification of Baskakov operators based on inverse Polya-Eggenberger distribution. First we estimate a recurrence relation by using hypergeometric series. We give a global approximation theorem in terms of second order modulus of continuity, a direct approximation theorem by means of the Ditzian-Totik modulus of smoothness and a Voronovskaja type theorem. Some approximation results in weighted space are obtained. Also, we show the rate of convergence of these operators to certain functions by illustrative graphics using the Maple algorithms.

research product