0000000000016575
AUTHOR
A. Cantaluppi
Possible light-induced superconductivity in K3C60 at high temperature.
The non-equilibrium control of emergent phenomena in solids is an important research frontier, encompassing effects such as the optical enhancement of superconductivity. Nonlinear excitation of certain phonons in bilayer copper oxides was recently shown to induce superconducting-like optical properties at temperatures far greater than the superconducting transition temperature, Tc. This effect was accompanied by the disruption of competing charge-density-wave correlations, which explained some but not all of the experimental results. Here we report a similar phenomenon in a very different compound, K3C60. By exciting metallic K3C60 with mid-infrared optical pulses, we induce a large increas…
Pressure tuning of light-induced superconductivity in K3C60
Optical excitation at terahertz frequencies has emerged as an effective means to manipulate complex solids dynamically. In the molecular solid K3C60, coherent excitation of intramolecular vibrations was shown to transform the high temperature metal into a non-equilibrium state with the optical conductivity of a superconductor. Here we tune this effect with hydrostatic pressure, and we find it to disappear around 0.3 GPa. Reduction with pressure underscores the similarity with the equilibrium superconducting phase of K3C60, in which a larger electronic bandwidth is detrimental for pairing. Crucially, our observation excludes alternative interpretations based on a high-mobility metallic phase…