0000000000017118

AUTHOR

Rahul Srivastava

Spontaneous proton decay and the origin of Peccei-Quinn symmetry

We propose a new interpretation of Peccei-Quinn symmetry within the Standard Model, identifying it with the axial $B + L$ symmetry i.e. $U(1)_{PQ} \equiv U(1)_{\gamma_5(B+L)}$. This new interpretation retains all the attractive features of Peccei-Quinn solution to strong CP problem but in addition also leads to several other new and interesting consequences. Owing to the identification $U(1)_{PQ} \equiv U(1)_{\gamma_5(B+L)}$ the axion also behaves like Majoron inducing small seesaw masses for neutrinos after spontaneous symmetry breaking. Another novel feature of this identification is the phenomenon of spontaneous (and also chiral) proton decay with its decay rate associated with the axion…

research product

Dark matter stability and Dirac neutrinos using only Standard Model symmetries

We provide a generic framework to obtain stable dark matter along with naturally small Dirac neutrino masses generated at the loop level. This is achieved through the spontaneous breaking of the global $U(1)_{B-L}$ symmetry already present in Standard Model. The $U(1)_{B-L}$ symmetry is broken down to a residual even $\mathcal{Z}_n$; $n \geq 4$ subgroup. The residual $\mathcal{Z}_n$ symmetry simultaneously guarantees dark matter stability and protects the Dirac nature of neutrinos. The $U(1)_{B-L}$ symmetry in our setup is anomaly free and can also be gauged in a straightforward way. Finally, we present an explicit example using our framework to show the idea in action.

research product

Simplest scoto-seesaw mechanism

By combining the simplest (3,1) version of the seesaw mechanism containing a single heavy "right-handed" neutrino with the minimal scotogenic approach to dark matter, we propose a theory for neutrino oscillations. The "atmospheric" mass scale arises at tree level from the seesaw, while the "solar" oscillation scale emerges radiatively, through a loop involving the "dark sector" exchange. Such simple setup gives a clear interpretation of the neutrino oscillation lengths, has a viable WIMP dark matter candidate, and implies a lower bound on the neutrinoless double beta decay rate.

research product

The simplest scoto-seesaw model: WIMP dark matter phenomenology and Higgs vacuum stability

We analyze the consistency of electroweak breaking, neutrino and dark matter phenomenology within the simplest scoto-seesaw model. By adding the minimal dark sector to the simplest "missing partner" type-I seesaw one has a physical picture for the neutrino oscillation lengths: the "atmospheric" mass scale arises from the tree-level seesaw, while the "solar" scale is induced radiatively, mediated by the dark sector. We identify parameter regions consistent with theoretical constraints, as well as dark matter relic abundance and direct detection searches. Using two-loop renormalization group equations we explore the stability of the vacuum and the consistency of the underlying dark parity sym…

research product

Gravitational footprints of massive neutrinos and lepton number breaking

We investigate the production of primordial Gravitational Waves (GWs) arising from First Order Phase Transitions (FOPTs) associated to neutrino mass generation in the context of type-I and inverse seesaw schemes. We examine both "high-scale" as well as "low-scale" variants, with either explicit or spontaneously broken lepton number symmetry $U(1)_L$ in the neutrino sector. In the latter case, a pseudo-Goldstone majoron-like boson may provide a candidate for cosmological dark matter. We find that schemes with softly-broken $U(1)_L$ and with single Higgs-doublet scalar sector lead to either no FOPTs or too weak FOPTs, precluding the detectability of GWs in present or near future measurements.…

research product

Consistency of the dynamical high-scale type-I seesaw mechanism

We analyze the consistency of electroweak breaking within the simplest high-scale Standard Model type-I seesaw mechanism. We derive the full two-loop RGEs of the relevant parameters, including the quartic Higgs self-coupling of the Standard Model. For the simplest case of bare "right-handed" neutrino mass terms we find that, with large Yukawa couplings, the Higgs quartic self-coupling becomes negative much below the seesaw scale, so that the model may be inconsistent even as an effective theory. We show, however, that the "dynamical" type-I high-scale seesaw with spontaneous lepton number violation has better stability properties.

research product

Scotogenic dark matter stability from gauged matter parity

We explore the idea that dark matter stability results from the presence of a matter-parity symmetry, arising naturally as a consequence of the spontaneous breaking of an extended $\mathrm{SU(3) \otimes SU(3)_L \otimes U(1)_X \otimes U(1)_{N}}$ electroweak gauge symmetry with fully gauged B-L. Using this framework we construct a theory for scotogenic dark matter and analyze its main features.

research product

CP symmetries as guiding posts: Revamping tribimaximal mixing. II.

In this follow up of arXiv:1812.04663 we analyze the generalized CP symmetries of the charged lepton mass matrix compatible with the complex version of the Tri-Bi-Maximal (TBM) lepton mixing pattern. These symmetries are used to `revamp' the simplest TBM \textit{Ansatz} in a systematic way. Our generalized patterns share some of the attractive features of the original TBM matrix and are consistent with current oscillation experiments. We also discuss their phenomenological implications both for upcoming neutrino oscillation and neutrinoless double beta decay experiments.

research product

Seesaw Dirac neutrino mass through dimension-six operators

In this paper, a follow-up of [S. C. Chuliá, R. Srivastava, and J. W. F. Valle, Phys. Lett. B 781, 122 (2018)], we describe the many pathways to generate Dirac neutrino mass through dimension-six operators. By using only the standard model Higgs doublet in the external legs, one gets a unique operator 1Λ2L¯Φ¯Φ¯ΦνR. In contrast, the presence of new scalars implies new possible field contractions, which greatly increase the number of possibilities. Here, we study in detail the simplest ones, involving SU(2)L singlets, doublets, and triplets. The extra symmetries needed to ensure the Dirac nature of neutrinos can also be responsible for stabilizing dark matter.

research product

A theory for scotogenic dark matter stabilised by residual gauge symmetry

Dark matter stability can result from a residual matter-parity symmetry, following naturally from the spontaneous breaking of the gauge symmetry. Here we explore this idea in the context of the $\mathrm{SU(3)_c \otimes SU(3)_L \otimes U(1)_X \otimes U(1)_{N}}$ electroweak extension of the standard model. The key feature of our new scotogenic dark matter theory is the use of a triplet scalar boson with anti-symmetric Yukawa couplings. This naturally implies that one of the light neutrinos is massless and, as a result, there is a lower bound for the $\rm 0\nu\beta\beta$ decay rate.

research product

Testing generalized CP symmetries with precision studies at DUNE

We examine the capabilities of the DUNE experiment in probing leptonic CP violation within the framework of theories with generalized CP symmetries characterized by the texture zeros of the corresponding CP transformation matrices. We investigate DUNE's potential to probe the two least known oscillation parameters, the atmospheric mixing angle $\theta_{23}$ and the Dirac CP-phase $\delta_{\rm CP}$. We fix theory-motivated benchmarks for ($ \sin^2\theta_{23}, \delta_{\rm CP} $) and take them as true values in our simulations. Assuming 3.5 years of neutrino running plus 3.5 years in the antineutrino mode, we show that in all cases DUNE can significantly constrain and in certain cases rule out…

research product

ΔL=3 processes: Proton decay and the LHC

We discuss lepton number violation in three units. From an effective field theory point of view, ΔL=3 processes can only arise from dimension 9 or higher operators. These operators also violate baryon number, hence many of them will induce proton decay. Given the high dimensionality of these operators, in order to have a proton half-life in the observable range, the new physics associated to ΔL=3 processes should be at a scale as low as 1 TeV. This opens up the possibility of searching for such processes not only in proton decay experiments but also at the LHC. In this work we analyze the relevant d=9, 11, 13 operators which violate lepton number in three units. We then construct one simple…

research product

Status and prospects of ‘bi-large’ leptonic mixing

Bi-large patterns for the leptonic mixing matrix are confronted with current neutrino oscillation data. We analyse the status of these patterns and determine, through realistic simulations, the potential of upcoming long-baseline experiment DUNE in testing bi-large \emph{ansatze} and discriminating amongst them.

research product

Dark matter as the origin of neutrino mass in the inverse seesaw mechanism

We propose that neutrino masses are "seeded" by a dark sector within the inverse seesaw mechanism. This way we have a new, "hidden", variant of the scotogenic scenario for radiative neutrino masses. We discuss both explicit and dynamical lepton number violation. In addition to invisible Higgs decays with majoron emission, we discuss in detail the pheneomenolgy of dark matter, as well as the novel features associated to charged lepton flavour violation, and neutrino physics.

research product

High scale mixing relations as a natural explanation for large neutrino mixing

The origin of small mixing among the quarks and a large mixing among the neutrinos has been an open question in particle physics. In order to answer this question, we postulate general relations among the quarks and the leptonic mixing angles at a high scale, which could be the scale of Grand Unified Theories. The central idea of these relations is that the quark and the leptonic mixing angles can be unified at some high scale either due to some quark-lepton symmetry or some other underlying mechanism and as a consequence, the mixing angles of the leptonic sector are proportional to that of the quark sector. We investigate the phenomenology of the possible relations where the leptonic mixin…

research product

A flavour physics scenario for the 750 GeV diphoton anomaly

A simple variant of a realistic flavor symmetry scheme for fermion masses and mixings provides a possible interpretation of the diphoton anomaly as an electroweak singlet ``flavon.'' The existence of TeV scale vectorlike T-quarks required to provide adequate values for Cabibbo-Kobayashi-Maskawa (CKM) parameters can also naturally account for the diphoton anomaly. Correlations between ${V}_{ub}$ and ${V}_{cb}$ with the vectorlike T-quark mass can be predicted. Should the diphoton anomaly survive in a future run, our proposed interpretation can also be tested in upcoming B and LHC studies.

research product

Zooming in on neutrino oscillations with DUNE

We examine the capabilities of the DUNE experiment as a probe of the neutrino mixing paradigm. Taking the current status of neutrino oscillations and the design specifications of DUNE, we determine the experiment's potential to probe the structure of neutrino mixing and CP violation. We focus on the poorly determined parameters $\theta_{23}$ and $\delta_{CP}$ and consider both two and seven years of run. We take various benchmarks as our true values, such as the current preferred values of $\theta_{23}$ and $\delta_{CP}$, as well as several theory-motivated choices. We determine quantitatively DUNE's potential to perform a precision measurement of $\theta_{23}$, as well as to test the CP vi…

research product

Precise predictions for Dirac neutrino mixing

The neutrino mixing parameters are thoroughly studied using renormalization-group evolution of Dirac neutrinos with recently proposed parametrization of the neutrino mixing angles referred as `high-scale mixing relations'. The correlations among all neutrino mixing and $CP$ violating observables are investigated. The predictions for the neutrino mixing angle $\theta_{23}$ are precise, and could be easily tested by ongoing and future experiments. We observe that the high scale mixing unification hypothesis is incompatible with Dirac neutrinos due to updated experimental data.

research product

Seesaw roadmap to neutrino mass and dark matter

We describe the many pathways to generate Majorana and Dirac neutrino mass through generalized dimension-5 operators a la Weinberg. The presence of new scalars beyond the Standard Model Higgs doublet implies new possible field contractions, which are required in the case of Dirac neutrinos. We also notice that, in the Dirac neutrino case, the extra symmetries needed to ensure the Dirac nature of neutrinos can also be made responsible for stability of dark matter.

research product

Can one ever prove that neutrinos are Dirac particles?

According to the "Black Box" theorem the experimental confirmation of neutrinoless double beta decay ($0 \nu 2 \beta$) would imply that at least one of the neutrinos is a Majorana particle. However, a null $0 \nu 2 \beta$ signal cannot decide the nature of neutrinos, as it can be suppressed even for Majorana neutrinos. In this letter we argue that if the null $0 \nu 2 \beta$ decay signal is accompanied by a $0 \nu 4 \beta$ quadruple beta decay signal, then at least one neutrino should be a Dirac particle. This argument holds irrespective of the underlying processes leading to such decays.

research product

Predicting neutrino oscillations with “bi-large” lepton mixing matrices

We propose two schemes for the lepton mixing matrix $U = U_l^\dagger U_\nu$, where $U = U_l$ refers to the charged sector, and $U_\nu$ denotes the neutrino diagonalization matrix. We assume $U_\nu$ to be CP conserving and its three angles to be connected with the Cabibbo angle in a simple manner. CP violation arises solely from the $U_l$, assumed to have the CKM form, $U_l\simeq V_{\rm CKM}$, suggested by unification. Oscillation parameters depend on a single parameter, leading to narrow ranges for the "solar" and "accelerator" angles $\theta_{12}$ and $\theta_{23}$, as well as for the CP phase, predicted as $\delta_{\rm CP}\sim 1.3\pi$.

research product

Dirac neutrinos from Peccei-Quinn symmetry: a fresh look at the axion

We show that a very simple solution to the strong CP problem naturally leads to Dirac neutrinos. Small effective neutrino masses emerge from a type-I Dirac seesaw mechanism. Neutrino mass limits probe the axion parameters in regions currently inaccessible to conventional searches.

research product

The Inverse Seesaw Family: Dirac And Majorana

After developing a general criterion for deciding which neutrino mass models belong to the category of inverse seesaw models, we apply it to obtain the Dirac analogue of the canonical Majorana inverse seesaw model. We then generalize the inverse seesaw model and obtain a class of inverse seesaw mechanisms both for Majorana and Dirac neutrinos. We further show that many of the models have double or multiple suppressions coming from tiny symmetry breaking "$\mu$-terms". These models can be tested both in colliders and with the observation of lepton flavour violating processes.

research product

Generalized bottom-tau unification, neutrino oscillations and dark matter: Predictions from a lepton quarticity flavor approach

We propose an $A_4$ extension of the Standard Model with a Lepton Quarticity symmetry correlating dark matter stability with the Dirac nature of neutrinos. The flavor symmetry predicts (i) a generalized bottom-tau mass relation involving all families, (ii) small neutrino masses are induced a la seesaw, (iii) CP must be significantly violated in neutrino oscillations, (iv) the atmospheric angle $\theta_{23}$ lies in the second octant, and (v) only the normal neutrino mass ordering is realized.

research product

Scotogenic dark symmetry as a residual subgroup of Standard Model symmetries

We show that the scotogenic dark symmetry can be obtained as a residual subgroup of the global $U(1)_{B-L}$ symmetry already present in Standard Model. We propose a general framework where the $U(1)_{B-L}$ symmetry is spontaneously broken to an even $\mathcal{Z}_{2n}$ subgroup, setting the general conditions for neutrinos to be Majorana and the dark matter stability in terms of the residual $\mathcal{Z}_{2n}$. Under this general framework, as examples, we build a class of simple models where, in the scotogenic spirit, the dark matter candidate is the lightest particle running inside the neutrino mass loop. The global $U(1)_{B-L}$ symmetry in our framework being anomaly free can also be gaug…

research product

Spontaneous Breaking of Lepton Number and Cosmological Domain Wall Problem

We show that if global lepton number symmetry is spontaneously broken in a post inflation epoch, then it can lead to the formation of cosmological domain walls. This happens in the well-known "Majoron paradigm" for neutrino mass generation. We propose some realistic examples which allow spontaneous lepton number breaking to be safe from such domain walls.

research product

Realistic Tri-Bi-Maximal neutrino mixing

We propose a generalized version of the Tri-Bi-Maximal (TBM) ansatz for lepton mixing, leading to non-zero reactor angle $\theta_{13}$ and CP violation. The latter is characterized by two CP phases. The Dirac phase affecting neutrino oscillations is nearly maximal ($\delta_{CP} \sim \pm \pi/2$), while the Majorana phase implies narrow allowed ranges for the neutrinoless double beta decay amplitude. The solar angle $\theta_{12}$ lies nearly at its TBM value, while the atmospheric angle $\theta_{23}$ has the TBM value for maximal $\delta_{CP}$. Neutrino oscillation predictions can be tested in present and upcoming experiments.

research product

Testing a lepton quarticity flavor theory of neutrino oscillations with the DUNE experiment

Oscillation studies play a central role in elucidating at least some aspects of the flavor problem. Here we examine the status of the predictions of a lepton quarticity flavor theory of neutrino oscillations against the existing global sample of oscillation data. By performing quantitative simulations we also determine the potential of the upcoming DUNE experiment in narrowing down the currently ill-measured oscillation parameters $\theta_{23}$ and $\delta_{\text{CP}}$. We present the expected improved sensitivity on these parameters for different assumptions.

research product