6533b7dcfe1ef96bd1271f1a
RESEARCH PRODUCT
Gravitational footprints of massive neutrinos and lepton number breaking
Rahul SrivastavaRahul SrivastavaAntónio P. MoraisAntonino MarcianoAndrea AddaziAndrea AddaziJosé W. F. ValleRoman Pasechniksubject
High Energy Physics - TheoryNuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Spontaneous symmetry breakingDark matterFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Computer Science::Digital Libraries01 natural sciencesGeneral Relativity and Quantum CosmologyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Seesaw molecular geometry0103 physical sciences010306 general physicsPhysics010308 nuclear & particles physicsMass generationHigh Energy Physics::PhenomenologyLepton numberlcsh:QC1-999High Energy Physics - PhenomenologySeesaw mechanismHigh Energy Physics - Theory (hep-th)Higgs bosonNeutrinolcsh:PhysicsAstrophysics - Cosmology and Nongalactic Astrophysicsdescription
We investigate the production of primordial Gravitational Waves (GWs) arising from First Order Phase Transitions (FOPTs) associated to neutrino mass generation in the context of type-I and inverse seesaw schemes. We examine both "high-scale" as well as "low-scale" variants, with either explicit or spontaneously broken lepton number symmetry $U(1)_L$ in the neutrino sector. In the latter case, a pseudo-Goldstone majoron-like boson may provide a candidate for cosmological dark matter. We find that schemes with softly-broken $U(1)_L$ and with single Higgs-doublet scalar sector lead to either no FOPTs or too weak FOPTs, precluding the detectability of GWs in present or near future measurements. Nevertheless, we found that, in the majoron-like seesaw scheme with spontaneously broken $U(1)_L$ at finite temperatures, one can have strong FOPTs and non-trivial primordial GW spectra which can fall well within the frequency and amplitude sensitivity of upcoming experiments, including LISA, BBO and u-DECIGO. However, GWs observability clashes with invisible Higgs decay constraints from the LHC. A simple and consistent fix is to assume the majoron-like mass to lie above the Higgs-decay kinematical threshold. We also found that the majoron-like variant of the low-scale seesaw mechanism implies a different GW spectrum than the one expected in the high-scale seesaw. This feature will be testable in future experiments. Our analysis shows that GWs can provide a new and complementary portal to test the neutrino mass generation mechanism.
year | journal | country | edition | language |
---|---|---|---|---|
2020-08-10 |