0000000000017367

AUTHOR

Ilgiz A. Mufazalov

showing 14 related works from this author

A T cell-specific deletion of HDAC1 protects against experimental autoimmune encephalomyelitis.

2017

Multiple sclerosis (MS) is a human neurodegenerative disease characterized by the invasion of autoreactive T cells from the periphery into the CNS. Application of pan-histone deacetylase inhibitors (HDACi) ameliorates experimental autoimmune encephalomyelitis (EAE), an animal model for MS, suggesting that HDACi might be a potential therapeutic strategy for MS. However, the function of individual HDAC members in the pathogenesis of EAE is not known. In this study we report that mice with a T cell-specific deletion of HDAC1 (using the Cd4-Cre deleter strain; HDAC1-cKO) were completely resistant to EAE despite the ability of HDAC1cKO CD4+ T cells to differentiate into Th17 cells. RNA sequencin…

0301 basic medicineReceptors CCR6Encephalomyelitis Autoimmune ExperimentalMultiple SclerosisReceptors CCR4T cellImmunologyCCR4Histone Deacetylase 1C-C chemokine receptor type 6Biologymedicine.disease_causeAutoimmunity03 medical and health sciencesChemokine receptorMice0302 clinical medicineCell MovementmedicineImmunology and AllergyAnimalsHumansCells CulturedMice KnockoutChimeraMultiple sclerosisExperimental autoimmune encephalomyelitisGene targetingmedicine.diseaseMolecular biologyDisease Models Animal030104 developmental biologymedicine.anatomical_structureSTAT1 Transcription FactorCancer researchTh17 Cells030215 immunologyJournal of autoimmunity
researchProduct

Expression of the G-protein coupled receptor EBI2 in T cells is highly regulated and confers pathogenicity to myelin specific Th17 cells

2014

Myelinmedicine.anatomical_structureNeurologyChemistryImmunologyImmunologymedicineImmunology and AllergyNeurology (clinical)IL-2 receptorPathogenicityCell biologyG protein-coupled receptorJournal of Neuroimmunology
researchProduct

Balanced Bcl-3 expression in murine CD4+T cells is required for generation of encephalitogenic Th17 cells

2017

The function of NF-κB family members is controlled by multiple mechanisms including the transcriptional regulator Bcl-3, an atypical member of the IκB family. By using a murine model of conditional Bcl-3 overexpression specifically in T cells, we observed impairment in the development of Th2, Th1 and Th17 cells. High expression of Bcl-3 promoted CD4+ T-cell survival, but at the same time suppressed proliferation in response to TCR stimulation, resulting in reduced CD4+ T-cell expansion. As a consequence, T cell specific overexpression of Bcl-3 led to reduced inflammation in the small intestine of mice applied with anti-CD3 in a model of gut inflammation. Moreover, impaired Th17-cell develop…

0301 basic medicineT cellMultiple sclerosisImmunologyT-cell receptorStimulationInflammationNF-κBBiologymedicine.diseaseSmall intestineCell biology03 medical and health scienceschemistry.chemical_compound030104 developmental biologymedicine.anatomical_structurechemistryImmunologymedicineTranscriptional regulationImmunology and Allergymedicine.symptomEuropean Journal of Immunology
researchProduct

Oral epithelial cells orchestrate innate type 17 responses to Candida albicans through the virulence factor candidalysin

2017

Candida albicans is a dimorphic commensal fungus that causes severe oral infections in immunodeficient patients. Invasion of C. albicans hyphae into oral epithelium is an essential virulence trait. Interleukin-17 (IL-17) signaling is required for both innate and adaptive immunity to C. albicans. During the innate response, IL-17 is produced by γδ T cells and a poorly understood population of innate-acting CD4+ αβ T cell receptor (TCRαβ)+ cells, but only the TCRαβ+ cells expand during acute infection. Confirming the innate nature of these cells, the TCR was not detectably activated during the primary response, as evidenced by Nur77eGFP mice that report antigen-specific signaling through the …

0301 basic medicineInnate immune systembiologyVirulence FactorsImmunologyPattern recognition receptorEpithelial CellsInflammationGeneral Medicinebiology.organism_classificationAcquired immune systemArticleCorpus albicansMicrobiologyFungal Proteins03 medical and health sciences030104 developmental biology0302 clinical medicineImmunityCandida albicansmedicinemedicine.symptomCandida albicansCandidalysin030215 immunologyScience Immunology
researchProduct

Cutting Edge: IL-6–Driven Immune Dysregulation Is Strictly Dependent on IL-6R α-Chain Expression

2020

Abstract IL-6 binds to the IL-6R α-chain (IL-6Rα) and signals via the signal transducer gp130. Recently, IL-6 was found to also bind to the cell surface glycoprotein CD5, which would then engage gp130 in the absence of IL-6Rα. However, the biological relevance of this alternative pathway is under debate. In this study, we developed a mouse model, in which murine IL-6 is overexpressed in a CD11c-Cre–dependent manner. Transgenic mice developed a lethal immune dysregulation syndrome with increased numbers of Ly-6G+ neutrophils and Ly-6Chi monocytes/macrophages. IL-6 overexpression promoted activation of CD4+ T cells while suppressing CD5+ B-1a cell development. However, additional ablation of …

Genetically modified mouseImmunologyInflammationMice Transgenicmedicine.disease_cause03 medical and health sciencesMice0302 clinical medicineRare DiseasesmedicineImmunology and AllergyAnimals2.1 Biological and endogenous factorsInflammatory and Immune SystemReceptorSTAT3biologyCell growthChemistryInterleukin-6Immune dysregulationGlycoprotein 130Receptors Interleukin-6Cell biologybiology.proteinAlternative complement pathwaymedicine.symptom030215 immunologySignal TransductionThe Journal of Immunology
researchProduct

Isolation of Central Nervous System (CNS) Infiltrating Cells

2014

Leukocyte infiltration of the central nervous system (CNS) occurs under certain pathogenic conditions and most often results in severe disorders. Therefore, the isolation and analysis of such infiltrating cell populations is necessary for elucidating the underlying pathogenic mechanisms. Here we describe a simple and straightforward protocol for cell isolation from the inflamed CNS, which combines mechanical dissociation and enzymatic degradation of the tissue. Additionally, purification by Percoll gradient centrifugation provides a great yield of the infiltrating material. The isolated cells can be further used for downstream applications such as cell sorting, cellular or molecular analysi…

medicine.anatomical_structureChemistryCellCentral nervous systemmedicinePercoll gradient centrifugationCell isolationCell sortingmedicine.diseaseInfiltration (medical)Molecular analysisCell biologyEnzymatic degradation
researchProduct

TGF-β inhibitor Smad7 regulates dendritic cell-induced autoimmunity

2017

TGF-β is an anti-inflammatory cytokine whose signaling is negatively controlled by Smad7. Previously, we established a role for Smad7 in the generation of autoreactive T cells; however, the function of Smad7 in dendritic cells (DCs) remains elusive. Here, we demonstrate that DC-specific Smad7 deficiency resulted in elevated expression of the transcription factors Batf3 and IRF8, leading to increased frequencies of CD8(+)CD103(+) DCs in the spleen. Furthermore, Smad7-deficient DCs expressed higher levels of indoleamine 2,3-dioxygenase (IDO), an enzyme associated with tolerance induction. Mice devoid of Smad7 specifically in DCs are resistant to the development of experimental autoimmune ence…

0301 basic medicineEncephalomyelitis Autoimmune Experimentalmedicine.medical_treatmentCellular differentiationAutoimmunitychemical and pharmacologic phenomenaCD8-Positive T-LymphocytesBiologyT-Lymphocytes RegulatorySmad7 ProteinImmune toleranceMice03 medical and health sciences0302 clinical medicineTransforming Growth Factor betaImmune TolerancemedicineAnimalsIndoleamine-Pyrrole 23-DioxygenaseMultidisciplinaryintegumentary systemExperimental autoimmune encephalomyelitisCell Differentiationhemic and immune systemsDendritic CellsDendritic cellTransforming growth factor betamedicine.diseaseCell biologyMice Inbred C57BLTolerance inductionBasic-Leucine Zipper Transcription Factors030104 developmental biologyCytokinePNAS PlusInterferon Regulatory FactorsImmunologybiology.proteinCytokinesSpleenCD8Signal Transduction030215 immunology
researchProduct

Intrinsic TNFR2 signaling in T regulatory cells provides protection in CNS autoimmunity

2018

Significance In spite of TNF involvement in the pathogenesis of multiple sclerosis (MS), systemic TNF neutralization in MS patients was not successful. One of the possible reasons is that TNF possesses both pathogenic and protective features that may be related to TNFR1 versus TNFR2 receptor engagement. This study uncovers one of such protective functions of TNF mediated by intrinsic TNFR2 signaling in Treg cells. In mice bearing humanized TNF and TNFR2 genetic loci, TNFR2 ablation restricted to Treg cells led to reduced capacity to control Th17 cell responses, exacerbated experimental autoimmune encephalomyelitis (EAE) development, and affected the maintenance of Treg cells. These findings…

Central Nervous System0301 basic medicineEncephalomyelitis Autoimmune ExperimentalT regulatory cellsmedicine.medical_treatmentAutoimmunitychemical and pharmacologic phenomenaBiologymedicine.disease_causeT-Lymphocytes RegulatoryneuroinflammationAutoimmunityMice03 medical and health sciencesImmunology and Inflammation0302 clinical medicineImmune systemmedicineAnimalsHumansReceptors Tumor Necrosis Factor Type IIIL-2 receptorCells CulturedNeuroinflammationMice KnockoutAutoimmune diseaseMultidisciplinaryEAETumor Necrosis Factor-alphaExperimental autoimmune encephalomyelitisFOXP3hemic and immune systemsBiological Sciencesmedicine.diseaseTNF/TNFR2Mice Inbred C57BLDisease Models Animalhumanized mice030104 developmental biologyCytokineGene Expression RegulationImmunology030215 immunologyProceedings of the National Academy of Sciences
researchProduct

Cell-Type-Specific Responses to Interleukin-1 Control Microbial Invasion and Tumor-Elicited Inflammation in Colorectal Cancer.

2017

Summary Chronic inflammation drives the progression of colorectal cancer (CRC). Increased expression of interleukin (IL)-17A is associated with poor prognosis, and IL-17A blockade curbs tumor progression in preclinical models of CRC. Here we examined the impact of IL-1 signaling, a key regulator of the IL-17 pathway, in different cell types within the CRC microenvironment. Genetic deletion of the IL-1 receptor (IL-1R1) in epithelial cells alleviated tumorigenesis in the APC model of CRC, demonstrating a cell-autonomous role for IL-1 signaling in early tumor seed outgrowth. T cell specific ablation of IL-1R1 decreased tumor-elicited inflammation dependent on IL-17 and IL-22, thereby reducing…

0301 basic medicineCell typeColorectal cancerCarcinogenesisNeutrophilsmedicine.medical_treatmentImmunologyMedizinInflammationBiologymedicine.disease_causeArticle03 medical and health sciencesMice0302 clinical medicineSalmonellamedicineTumor MicroenvironmentImmunology and AllergyAnimalsHumansCells CulturedInflammationMice KnockoutTumor microenvironmentSalmonella Infections AnimalInterleukinsInterleukin-17InterleukinReceptors Interleukin-1medicine.disease030104 developmental biologyInfectious DiseasesCytokineTumor progressionOrgan Specificity030220 oncology & carcinogenesisCancer researchmedicine.symptomCarcinogenesisColorectal NeoplasmsInterleukin-1Signal TransductionImmunity
researchProduct

IL-17 controls central nervous system autoimmunity through the intestinal microbiome

2021

Interleukin-17A- (IL-17A) and IL-17F-producing CD4(+) T helper cells (T(H)17 cells) are implicated in the development of chronic inflammatory diseases, such as multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). T-H 17 cells also orchestrate leukocyte invasion of the central nervous system (CNS) and subsequent tissue damage. However, the role of IL-17A and IL-17F as effector cytokines is still confused with the encephalitogenic function of the cells that produce these cytokines, namely, T-H 17 cells, fueling a long-standing debate in the neuroimmunology field. Here, we demonstrated that mice deficient for IL-17A/F lose their susceptibility to EAE, which…

0301 basic medicineCentral Nervous SystemMaleEncephalomyelitis Autoimmune ExperimentalMultiple SclerosisreceptorImmunologyCentral nervous system610 Medicine & healthGut flora10263 Institute of Experimental Immunologymedicine.disease_causeAutoimmunityinterleukin-1703 medical and health sciencesMice0302 clinical medicinemedicinecytokineAnimalsHumanscnst-cellsMice Knockout2403 Immunologybiologygut microbiotaMultiple sclerosisExperimental autoimmune encephalomyelitisGeneral MedicineFecal Microbiota Transplantationneutralizationmedicine.diseasebiology.organism_classificationAdoptive Transfer3. Good healthGut EpitheliumGastrointestinal Microbiome030104 developmental biologyNeuroimmunologymedicine.anatomical_structureImmunology2723 Immunology and Allergy570 Life sciences; biologyTh17 CellssequencesFemaleInterleukin 17030217 neurology & neurosurgery
researchProduct

ID: 186

2015

In the past years, and clear pathogenic role was shown for Th17 cells in the development of autoimmune diseases. In particular, these cells were shown to play a critical roIn the past years, and clear pathogenic role was shown for Th17 cells in the development of autoimmune diseases. In particular, these cells were shown to play a critical role in the development of experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. One of the major cytokines Th17 cells produce is IL-17A, a cytokine of the IL-17 family. IL-17A, as well as it homologue IL-17F bind and trigger cells via the IL-17 receptor A/C complex. We have used a series of mice with deficiencies in the…

Multiple sclerosismedicine.medical_treatmentImmunologyExperimental autoimmune encephalomyelitisHematologyBiologymedicine.diseasemedicine.disease_causeBiochemistryAutoimmunityCytokineImmunologymedicineImmunology and AllergyInterleukin 17ReceptorMolecular BiologyTranscription factorFunction (biology)Cytokine
researchProduct

IL ‐1 signaling is critical for expansion but not generation of autoreactive GM ‐ CSF + Th17 cells

2016

Abstract Interleukin‐1 (IL‐1) is implicated in numerous pathologies, including multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). However, the exact mechanism by which IL‐1 is involved in the generation of pathogenic T cells and in disease development remains largely unknown. We found that following EAE induction, pertussis toxin administration leads to IL‐1 receptor type 1 (IL‐1R1)‐dependent IL‐1β expression by myeloid cells in the draining lymph nodes. This myeloid‐derived IL‐1β did not vitally contribute to the generation and plasticity of Th17 cells, but rather promoted the expansion of a GM‐CSF + Th17 cell subset, thereby enhancing its encephalitog…

0301 basic medicineEncephalomyelitis Autoimmune ExperimentalBiologymedicine.disease_causePertussis toxinGeneral Biochemistry Genetics and Molecular BiologyAutoimmunityMice03 medical and health sciences0302 clinical medicineMediatormedicineAnimalsInducerMolecular BiologyCell ProliferationGeneral Immunology and MicrobiologyGeneral NeuroscienceMultiple sclerosisExperimental autoimmune encephalomyelitisGranulocyte-Macrophage Colony-Stimulating FactorArticlesmedicine.diseaseCell biology030104 developmental biologyPertussis ToxinT cell subsetImmunologyTh17 CellsLymphInterleukin-1030215 immunologyThe EMBO Journal
researchProduct

Elevated levels of Bcl-3 inhibits Treg development and function resulting in spontaneous colitis

2017

Bcl-3 is an atypical NF-κB family member that regulates NF-κB-dependent gene expression in effector T cells, but a cell-intrinsic function in regulatory T (Treg) cells and colitis is not clear. Here we show that Bcl-3 expression levels in colonic T cells correlate with disease manifestation in patients with inflammatory bowel disease. Mice with T-cell-specific overexpression of Bcl-3 develop severe colitis that can be attributed to defective Treg cell development and function, leading to the infiltration of immune cells such as pro-inflammatory γδT cells, but not αβ T cells. In Treg cells, Bcl-3 associates directly with NF-κB p50 to inhibit DNA binding of p50/p50 and p50/p65 NF-κB dimers, t…

AdultMale0301 basic medicineP50ScienceGeneral Physics and AstronomyBiologyT-Lymphocytes RegulatoryInflammatory bowel diseaseArticleGeneral Biochemistry Genetics and Molecular BiologyYoung Adult03 medical and health sciences0302 clinical medicineImmune systemB-Cell Lymphoma 3 ProteinProto-Oncogene ProteinsGene expressionmedicineAnimalsHumansColitisMice KnockoutRegulation of gene expressionMultidisciplinaryEffectorHEK 293 cellsQNF-kappa BTranscription Factor RelANF-kappa B p50 SubunitGeneral ChemistryMiddle AgedColitismedicine.diseaseMice Inbred C57BLHEK293 Cells030104 developmental biologyGene Expression Regulation030220 oncology & carcinogenesisImmunologyFemaleProtein BindingTranscription FactorsNature Communications
researchProduct

EBI2 Is Highly Expressed in Multiple Sclerosis Lesions and Promotes Early CNS Migration of Encephalitogenic CD4 T Cells

2017

Arrival of encephalitogenic T cells at inflammatory foci represents a critical step in development of experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. EBI2 and its ligand, 7{alpha},25-OHC, direct immune cell localization in secondary lymphoid organs. CH25H and CYP7B1 hydroxylate cholesterol to 7{alpha},25-OHC. During EAE, we found increased expression of CH25H by microglia and CYP7B1 by CNS-infiltrating immune cells elevating the ligand concentration in the CNS. Two critical pro-inflammatory cytokines, interleukin-23 (IL-23) and interleukin-1 beta (IL-1{beta}), maintained expression of EBI2 in differentiating Th17 cells. In line with this, EBI2 enhan…

0301 basic medicineCD4-Positive T-LymphocytesCentral Nervous SystemMaleGPR183Cancer ResearchEncephalomyelitis Autoimmune ExperimentalOxysterolCentral nervous systemInterleukin-1betaCytochrome P450 Family 7CH25HmicrogliaAutoimmunityBiologymedicine.disease_causemultiple sclerosisInterleukin-23General Biochemistry Genetics and Molecular BiologyAutoimmunityReceptors G-Protein-Coupled03 medical and health sciencesMiceImmune systemCell MovementmedicineAnimalsEBI2lcsh:QH301-705.5MicrogliaEAEMultiple sclerosisExperimental autoimmune encephalomyelitisGPR18325-OHCmedicine.diseaseMice Inbred C57BLDisease Models Animal030104 developmental biologymedicine.anatomical_structurelcsh:Biology (General)ImmunologySteroid HydroxylasesTh17 CellsFemaleTh17CNSoxysterolCell Reports
researchProduct