6533b851fe1ef96bd12aa257
RESEARCH PRODUCT
TGF-β inhibitor Smad7 regulates dendritic cell-induced autoimmunity
Tommy RegenDominika LukasIngo KleiterJunda M. KelFlorian WankeMarco PrinzAri WaismanIlgiz A. MufazalovBoris ReizisNir YogevYilang TangBjörn E. ClausenWerner MüllerFlorian C. Kurschussubject
0301 basic medicineEncephalomyelitis Autoimmune Experimentalmedicine.medical_treatmentCellular differentiationAutoimmunitychemical and pharmacologic phenomenaCD8-Positive T-LymphocytesBiologyT-Lymphocytes RegulatorySmad7 ProteinImmune toleranceMice03 medical and health sciences0302 clinical medicineTransforming Growth Factor betaImmune TolerancemedicineAnimalsIndoleamine-Pyrrole 23-DioxygenaseMultidisciplinaryintegumentary systemExperimental autoimmune encephalomyelitisCell Differentiationhemic and immune systemsDendritic CellsDendritic cellTransforming growth factor betamedicine.diseaseCell biologyMice Inbred C57BLTolerance inductionBasic-Leucine Zipper Transcription Factors030104 developmental biologyCytokinePNAS PlusInterferon Regulatory FactorsImmunologybiology.proteinCytokinesSpleenCD8Signal Transduction030215 immunologydescription
TGF-β is an anti-inflammatory cytokine whose signaling is negatively controlled by Smad7. Previously, we established a role for Smad7 in the generation of autoreactive T cells; however, the function of Smad7 in dendritic cells (DCs) remains elusive. Here, we demonstrate that DC-specific Smad7 deficiency resulted in elevated expression of the transcription factors Batf3 and IRF8, leading to increased frequencies of CD8(+)CD103(+) DCs in the spleen. Furthermore, Smad7-deficient DCs expressed higher levels of indoleamine 2,3-dioxygenase (IDO), an enzyme associated with tolerance induction. Mice devoid of Smad7 specifically in DCs are resistant to the development of experimental autoimmune encephalomyelitis (EAE) as a result of an increase of protective regulatory T cells (Tregs) and reduction of encephalitogenic effector T cells in the central nervous system. In agreement, inhibition of IDO activity or depletion of Tregs restored disease susceptibility. Intriguingly, when Smad7-deficient DCs also lacked the IFN-γ receptor, the mice regained susceptibility to EAE, demonstrating that IFN-γ signaling in DCs mediates their tolerogenic function. Our data indicate that Smad7 expression governs splenic DC subset differentiation and is critical for the promotion of their efficient function in immunity.
| year | journal | country | edition | language |
|---|---|---|---|---|
| 2017-02-06 |