0000000000005641

AUTHOR

Tommy Regen

showing 18 related works from this author

Microglia are unique tissue phagocytes with high self-renewing capacity

2014

medicine.anatomical_structureNeurologyMicrogliabusiness.industryImmunologyImmunologyImmunology and AllergyMedicineNeurology (clinical)businessNeuroscienceJournal of Neuroimmunology
researchProduct

RNase H2 Loss in Murine Astrocytes Results in Cellular Defects Reminiscent of Nucleic Acid-Mediated Autoinflammation

2018

Aicardi-Goutières syndrome (AGS) is a rare early onset childhood encephalopathy caused by persistent neuroinflammation of autoimmune origin. AGS is a genetic disorder and >50% of affected individuals bear hypomorphic mutations in ribonuclease H2 (RNase H2). All available RNase H2 mouse models so far fail to mimic the prominent CNS involvement seen in AGS. To establish a mouse model recapitulating the human disease, we deleted RNase H2 specifically in the brain, the most severely affected organ in AGS. Although RNase H2δGFAPmice lacked the nuclease in astrocytes and a majority of neurons, no disease signs were apparent in these animals. We additionally confirmed these results…

0301 basic medicinelcsh:Immunologic diseases. AllergyMaleEncephalomyelitis Autoimmune ExperimentalAicardi–Goutières syndromeRNase PDNA damageImmunologyRibonuclease HFluorescent Antibody TechniqueAicardi-goutières Syndrome ; Cellular Senescence ; Dna Damage ; Interferon Signature ; Rnase H2BiologyNervous System MalformationsAutoimmune Diseases03 medical and health sciencesMiceAutoimmune Diseases of the Nervous SystemNucleic AcidsmedicineImmunology and Allergycellular senescenceAnimalsRibonucleaseNeuroinflammationCells CulturedOriginal ResearchInflammationMice KnockoutInnate immune systemBrainmedicine.diseaseMolecular biologyImmunohistochemistryDisease Models Animal030104 developmental biologymedicine.anatomical_structurePhenotypeinterferon signatureAstrocytesKnockout mousebiology.proteinAicardi–Goutières syndromeDNA damageFemalelcsh:RC581-607RNase H2BiomarkersAstrocyteFrontiers in Immunology
researchProduct

IFN-γ–Producing CD4+ T Cells Promote Generation of Protective Germinal Center–Derived IgM+ B Cell Memory against Salmonella Typhi

2014

Abstract Abs play a significant role in protection against the intracellular bacterium Salmonella Typhi. In this article, we investigated how long-term protective IgM responses can be elicited by a S. Typhi outer-membrane protein C– and F–based subunit vaccine (porins). We found that repeated Ag exposure promoted a CD4+ T cell–dependent germinal center reaction that generated mutated IgM-producing B cells and was accompanied by a strong expansion of IFN-γ–secreting T follicular helper cells. Genetic ablation of individual cytokine receptors revealed that both IFN-γ and IL-17 are required for optimal germinal center reactions and production of porin-specific memory IgM+ B cells. However, mor…

CD4-Positive T-LymphocytesMaleSalmonella VaccinesProtein subunitmedicine.medical_treatmentImmunologyCellBiologySalmonella typhiMicrobiologyInterferon-gammaMice03 medical and health sciences0302 clinical medicinemedicineAnimalsHumansImmunology and AllergyTyphoid FeverReceptorB cell030304 developmental biologyMice KnockoutB-Lymphocytes0303 health sciencesGerminal centerSalmonella typhiGerminal Center3. Good healthVaccinationmedicine.anatomical_structureCytokineImmunoglobulin MbacteriaFemaleImmunologic Memory030215 immunologyThe Journal of Immunology
researchProduct

CD14 is a key organizer of microglial responses to CNS infection and injury

2015

Microglia, innate immune cells of the CNS, sense infection and damage through overlapping receptor sets. Toll-like receptor (TLR) 4 recognizes bacterial lipopolysaccharide (LPS) and multiple injury-associated factors. We show that its co-receptor CD14 serves three non-redundant functions in microglia. First, it confers an up to 100-fold higher LPS sensitivity compared to peripheral macrophages to enable efficient proinflammatory cytokine induction. Second, CD14 prevents excessive responses to massive LPS challenges via an interferon β-mediated feedback. Third, CD14 is mandatory for microglial reactions to tissue damage-associated signals. In mice, these functions are essential for balanced …

0301 basic medicineChemokineToll-like receptorInnate immune systembiologyMicrogliaCD14Proinflammatory cytokine03 medical and health sciencesCellular and Molecular Neuroscience030104 developmental biologymedicine.anatomical_structureImmune systemNeurologyImmunologybiology.proteinTLR4medicineGlia
researchProduct

Alternative Splice Forms of CYLD Mediate Ubiquitination of SMAD7 to Prevent TGFB Signaling and Promote Colitis

2018

Background & Aims The CYLD lysine 63 deubiquitinase gene (CYLD) encodes tumor suppressor protein that is mutated in familial cylindromatosus, and variants have been associated with Crohn disease (CD). Splice forms of CYLD that lack exons 7 and 8 regulate transcription factors and functions of immune cells. We examined the expression of splice forms of CYLD in colon tissues from patients with CD and their effects in mice. Methods We performed immunohistochemical analyses of colon tissues from patients with untreated CD and patients without inflammatory bowel diseases (controls). We obtained mice that expressed splice forms of CYLD (sCYLD mice) without or with SMAD7 (sCYLD/SMAD7 mice) from tr…

0301 basic medicineTranscription FactorBiopsyInbred C57BLTransgenicImmune RegulationSettore MED/12MiceRandom Allocation0302 clinical medicineCrohn DiseaseReference ValuesNeedleIntestinal Mucosaintegumentary systemChemistryBiopsy NeedleGastroenterologyT helper cellFlow CytometryPost-translational ModificationImmunohistochemistryDeubiquitinating Enzyme CYLDCysteine Endopeptidasesmedicine.anatomical_structure030211 gastroenterology & hepatologyTumor necrosis factor alphaSignal TransductionGenetically modified mouseRegulatory T cellTransgeneMice TransgenicSmad7 ProteinTransforming Growth Factor beta103 medical and health sciencesImmune systemmedicineAnimalsHumansCytokine SignalingHepatologyAnimalHEK 293 cellsUbiquitinationMolecular biologyMice Inbred C57BLDisease Models Animal030104 developmental biologyDisease ModelsCytokine Signaling; Immune Regulation; Post-translational Modification; Transcription Factor; Biopsy Needle; Crohn Disease; Cysteine Endopeptidases; Deubiquitinating Enzyme CYLD; Disease Models Animal; Flow Cytometry; Immunohistochemistry; Intestinal Mucosa; Mice Inbred C57BL; Mice Transgenic; Random Allocation; Reference Values; Signal Transduction; Smad7 Protein; Transforming Growth Factor beta1; UbiquitinationTransforming growth factorGastroenterology
researchProduct

Blimp1 Prevents Methylation of Foxp3 and Loss of Regulatory T Cell Identity at Sites of Inflammation

2018

Summary Foxp3+ regulatory T (Treg) cells restrict immune pathology in inflamed tissues; however, an inflammatory environment presents a threat to Treg cell identity and function. Here, we establish a transcriptional signature of central nervous system (CNS) Treg cells that accumulate during experimental autoimmune encephalitis (EAE) and identify a pathway that maintains Treg cell function and identity during severe inflammation. This pathway is dependent on the transcriptional regulator Blimp1, which prevents downregulation of Foxp3 expression and “toxic” gain-of-function of Treg cells in the inflamed CNS. Blimp1 negatively regulates IL-6- and STAT3-dependent Dnmt3a expression and function …

0301 basic medicineMaleEncephalomyelitis Autoimmune ExperimentalBlimp1CNS2Regulatory T cellInflammationchemical and pharmacologic phenomenaBiologyT-Lymphocytes RegulatoryGeneral Biochemistry Genetics and Molecular BiologyArticleepigenetic regulationDNA Methyltransferase 3AEpigenesis Genetic03 medical and health sciencesGenomic ImprintingMice0302 clinical medicineImmune systemDownregulation and upregulationmedicineAnimalsEpigeneticsDNA (Cytosine-5-)-Methyltransferaseslcsh:QH301-705.5Regulation of gene expressionInterleukin-6FOXP3Forkhead Transcription FactorsDNA methyltransferaseshemic and immune systemsDNA Methylation3. Good healthCell biologyddc:Mice Inbred C57BL030104 developmental biologymedicine.anatomical_structureregulatory T cellslcsh:Biology (General)inflammationFoxp3DNA methylationFemalePositive Regulatory Domain I-Binding Factor 1medicine.symptomCNS030217 neurology & neurosurgeryCell Reports
researchProduct

A presumed antagonistic LPS identifies distinct functional organization of TLR4 in mouse microglia

2017

Microglia as principle innate immune cells of the central nervous system (CNS) are the first line of defense against invading pathogens. They are capable of sensing infections through diverse receptors, such as Toll-like receptor 4 (TLR4). This receptor is best known for its ability to recognize bacterial lipopolysaccharide (LPS), a causative agent of gram-negative sepsis and septic shock. A putative, naturally occurring antagonist of TLR4 derives from the photosynthetic bacterium Rhodobacter sphaeroides. However, the antagonistic potential of R. sphaeroides LPS (Rs-LPS) is no universal feature, since several studies suggested agonistic rather than antagonistic actions of this molecule depe…

0301 basic medicineInnate immune systemLipopolysaccharideMicrogliaCD14Biology3. Good healthCell biology03 medical and health sciencesCellular and Molecular Neurosciencechemistry.chemical_compound030104 developmental biologymedicine.anatomical_structureImmune systemNeurologychemistryTRIFImmunologyTLR4medicinelipids (amino acids peptides and proteins)ReceptorGlia
researchProduct

TGF-β inhibitor Smad7 regulates dendritic cell-induced autoimmunity

2017

TGF-β is an anti-inflammatory cytokine whose signaling is negatively controlled by Smad7. Previously, we established a role for Smad7 in the generation of autoreactive T cells; however, the function of Smad7 in dendritic cells (DCs) remains elusive. Here, we demonstrate that DC-specific Smad7 deficiency resulted in elevated expression of the transcription factors Batf3 and IRF8, leading to increased frequencies of CD8(+)CD103(+) DCs in the spleen. Furthermore, Smad7-deficient DCs expressed higher levels of indoleamine 2,3-dioxygenase (IDO), an enzyme associated with tolerance induction. Mice devoid of Smad7 specifically in DCs are resistant to the development of experimental autoimmune ence…

0301 basic medicineEncephalomyelitis Autoimmune Experimentalmedicine.medical_treatmentCellular differentiationAutoimmunitychemical and pharmacologic phenomenaCD8-Positive T-LymphocytesBiologyT-Lymphocytes RegulatorySmad7 ProteinImmune toleranceMice03 medical and health sciences0302 clinical medicineTransforming Growth Factor betaImmune TolerancemedicineAnimalsIndoleamine-Pyrrole 23-DioxygenaseMultidisciplinaryintegumentary systemExperimental autoimmune encephalomyelitisCell Differentiationhemic and immune systemsDendritic CellsDendritic cellTransforming growth factor betamedicine.diseaseCell biologyMice Inbred C57BLTolerance inductionBasic-Leucine Zipper Transcription Factors030104 developmental biologyCytokinePNAS PlusInterferon Regulatory FactorsImmunologybiology.proteinCytokinesSpleenCD8Signal Transduction030215 immunology
researchProduct

IL-17A/F in Leishmania major-resistant C57BL/6 mice.

2019

Proinflammatory IL-17 plays an important role in various diseases and defence against extracellular microorganisms. Healing of leishmaniasis is promoted by Th1/Tc1 cells, whereas Th2/Treg are associated with worsened disease outcome. In addition, high expression of IL-17A in Leishmania-susceptible BALB/c and artificial overexpression of IL-17A in T cells in resistant C57BL/6 mice worsened disease outcome. Since C57BL/6 mice lacking only IL-17A exhibited no phenotype, and IL-17A and IL-17F share similar receptors, but differentially regulate chemokine secretion, we studied mice lacking both IL-17A and IL-17F (IL-17A/F-/- ) in infections with Leishmania major. Interestingly, lesion volumes an…

0301 basic medicineC57BL/6CD4-Positive T-LymphocytesMaleDermatologyBiochemistryProinflammatory cytokineLesion030207 dermatology & venereal diseases03 medical and health sciencesMice0302 clinical medicineTh2 CellsmedicineAnimalsSecretionLeishmania majorReceptorMolecular BiologyIntraepithelial LymphocytesLeishmaniasisCrosses GeneticLeishmaniaMice Inbred BALB CbiologyInterleukin-17Th1 Cellsbiology.organism_classificationPhenotypeMice Inbred C57BL030104 developmental biologyPhenotypeChemokine secretionImmunologyDisease ProgressionCytokinesFemalemedicine.symptomExperimental dermatology
researchProduct

Tyrphostin AG126 exerts neuroprotection in CNS inflammation by a dual mechanism

2015

The putative protein tyrosine kinase (PTK) inhibitor tyrphostin AG126 has proven beneficial in various models of inflammatory disease. Yet molecular targets and cellular mechanisms remained enigmatic. We demonstrate here that AG126 treatment has beneficial effects in experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis. AG126 alleviates the clinical symptoms, diminishes encephalitogenic Th17 differentiation, reduces inflammatory CNS infiltration as well as microglia activation and attenuates myelin damage. We show that AG126 directly inhibits Bruton's tyrosine kinase (BTK), a PTK associated with B cell receptor and Toll-like receptor (TLR) signaling. However, BTK …

MicrogliabiologyExperimental autoimmune encephalomyelitisB-cell receptorInflammationmedicine.diseaseNeuroprotectionProinflammatory cytokineCell biologyCellular and Molecular Neurosciencemedicine.anatomical_structureNeurologyImmunologymedicinebiology.proteinBruton's tyrosine kinasemedicine.symptomTyrosine kinaseGlia
researchProduct

IL-17 controls central nervous system autoimmunity through the intestinal microbiome

2021

Interleukin-17A- (IL-17A) and IL-17F-producing CD4(+) T helper cells (T(H)17 cells) are implicated in the development of chronic inflammatory diseases, such as multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). T-H 17 cells also orchestrate leukocyte invasion of the central nervous system (CNS) and subsequent tissue damage. However, the role of IL-17A and IL-17F as effector cytokines is still confused with the encephalitogenic function of the cells that produce these cytokines, namely, T-H 17 cells, fueling a long-standing debate in the neuroimmunology field. Here, we demonstrated that mice deficient for IL-17A/F lose their susceptibility to EAE, which…

0301 basic medicineCentral Nervous SystemMaleEncephalomyelitis Autoimmune ExperimentalMultiple SclerosisreceptorImmunologyCentral nervous system610 Medicine & healthGut flora10263 Institute of Experimental Immunologymedicine.disease_causeAutoimmunityinterleukin-1703 medical and health sciencesMice0302 clinical medicinemedicinecytokineAnimalsHumanscnst-cellsMice Knockout2403 Immunologybiologygut microbiotaMultiple sclerosisExperimental autoimmune encephalomyelitisGeneral MedicineFecal Microbiota Transplantationneutralizationmedicine.diseasebiology.organism_classificationAdoptive Transfer3. Good healthGut EpitheliumGastrointestinal Microbiome030104 developmental biologyNeuroimmunologymedicine.anatomical_structureImmunology2723 Immunology and Allergy570 Life sciences; biologyTh17 CellssequencesFemaleInterleukin 17030217 neurology & neurosurgery
researchProduct

ID: 186

2015

In the past years, and clear pathogenic role was shown for Th17 cells in the development of autoimmune diseases. In particular, these cells were shown to play a critical roIn the past years, and clear pathogenic role was shown for Th17 cells in the development of autoimmune diseases. In particular, these cells were shown to play a critical role in the development of experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. One of the major cytokines Th17 cells produce is IL-17A, a cytokine of the IL-17 family. IL-17A, as well as it homologue IL-17F bind and trigger cells via the IL-17 receptor A/C complex. We have used a series of mice with deficiencies in the…

Multiple sclerosismedicine.medical_treatmentImmunologyExperimental autoimmune encephalomyelitisHematologyBiologymedicine.diseasemedicine.disease_causeBiochemistryAutoimmunityCytokineImmunologymedicineImmunology and AllergyInterleukin 17ReceptorMolecular BiologyTranscription factorFunction (biology)Cytokine
researchProduct

IL ‐1 signaling is critical for expansion but not generation of autoreactive GM ‐ CSF + Th17 cells

2016

Abstract Interleukin‐1 (IL‐1) is implicated in numerous pathologies, including multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). However, the exact mechanism by which IL‐1 is involved in the generation of pathogenic T cells and in disease development remains largely unknown. We found that following EAE induction, pertussis toxin administration leads to IL‐1 receptor type 1 (IL‐1R1)‐dependent IL‐1β expression by myeloid cells in the draining lymph nodes. This myeloid‐derived IL‐1β did not vitally contribute to the generation and plasticity of Th17 cells, but rather promoted the expansion of a GM‐CSF + Th17 cell subset, thereby enhancing its encephalitog…

0301 basic medicineEncephalomyelitis Autoimmune ExperimentalBiologymedicine.disease_causePertussis toxinGeneral Biochemistry Genetics and Molecular BiologyAutoimmunityMice03 medical and health sciences0302 clinical medicineMediatormedicineAnimalsInducerMolecular BiologyCell ProliferationGeneral Immunology and MicrobiologyGeneral NeuroscienceMultiple sclerosisExperimental autoimmune encephalomyelitisGranulocyte-Macrophage Colony-Stimulating FactorArticlesmedicine.diseaseCell biology030104 developmental biologyPertussis ToxinT cell subsetImmunologyTh17 CellsLymphInterleukin-1030215 immunologyThe EMBO Journal
researchProduct

Modeling a complex disease: Multiple sclerosis—Update 2020

2021

Multiple sclerosis (MS) is a complex inflammatory disease of the central nervous system (CNS) with an unknown etiology. Thereby, MS is not a uniform disease but rather represents a spectrum of disorders, where each aspect needs to be modeled with specific requirements-for a systematic overview see our previous issue of this review (Kurschus, Wortge, & Waisman, 2011). However, there is broad consensus about the critical involvement of the immune system in the disease pathogenesis. To better understand how the immune system contributes to CNS autoimmunity, the model of experimental autoimmune encephalomyelitis (EAE) was developed. EAE can be induced in susceptible animals in many different wa…

Multiple sclerosisCentral nervous systemExperimental autoimmune encephalomyelitisComplex diseaseDiseaseBiologyDisease pathogenesismedicine.diseaseMyelin oligodendrocyte glycoprotein03 medical and health sciences0302 clinical medicinemedicine.anatomical_structureImmune systemmedicinebiology.proteinNeuroscience030215 immunology
researchProduct

Meningeal γδ T cell-derived IL-17 controls synaptic plasticity and short-term memory

2019

The notion of "immune privilege" of the brain has been revised to accommodate its infiltration, at steady state, by immune cells that participate in normal neurophysiology. However, the immune mechanisms that regulate learning and memory remain poorly understood. Here, we show that noninflammatory interleukin-17 (IL-17) derived from a previously unknown fetal-derived meningeal-resident γδ T cell subset promotes cognition. When tested in classical spatial learning paradigms, mice lacking γδ T cells or IL-17 displayed deficient short-term memory while retaining long-term memory. The plasticity of glutamatergic synapses was reduced in the absence of IL-17, resulting in impaired long-term poten…

0301 basic medicineT cellT-LymphocytesImmunologyCellShort-term memoryBiologyArticle03 medical and health sciencesGlutamatergicMice0302 clinical medicineImmune systemMeningesImmune privilegemedicineAnimalsMice KnockoutNeuronal PlasticityInterleukin-17Long-term potentiationGeneral MedicineMice Inbred C57BL030104 developmental biologymedicine.anatomical_structureMemory Short-TermSynaptic plasticityNeuroscience030217 neurology & neurosurgery
researchProduct

Interferon-γ-Driven iNOS: A Molecular Pathway to Terminal Shock in Arenavirus Hemorrhagic Fever

2017

Arenaviruses such as Lassa virus (LASV) cause hemorrhagic fever. Terminal shock is associated with a systemic cytokine storm, but the mechanisms are ill defined. Here we used HLA-A2-expressing mice infected with a monkey-pathogenic strain of lymphocytic choriomeningitis virus (LCMV-WE), a close relative of LASV, to investigate the pathophysiology of arenavirus hemorrhagic fever (AHF). AHF manifested as pleural effusions, edematous skin swelling, and serum albumin loss, culminating in hypovolemic shock. A characteristic cytokine storm included numerous pro-inflammatory cytokines and nitric oxide (NO) metabolites. Edema formation and terminal shock were abrogated in mice lacking inducible nit…

0301 basic medicineMaleHemorrhagic Fevers ViralNitric Oxide Synthase Type IIBiologyLymphocytic Choriomeningitisddc:616.07Lymphocytic choriomeningitismedicine.disease_causeNitric OxideMicrobiologyViral hemorrhagic fever03 medical and health sciencesInterferon-gammaMice0302 clinical medicineVirologymedicineAnimalsHumansLymphocytic choriomeningitis virusLassa feverArenavirusddc:617medicine.diseasebiology.organism_classification3. Good healthNitric oxide synthaseMice Inbred C57BLDisease Models Animal030104 developmental biologyLassa virus030220 oncology & carcinogenesisShock (circulatory)Immunologybiology.proteinParasitologyFemalemedicine.symptomCytokine storm
researchProduct

Genetic Cell Ablation Reveals Clusters of Local Self-Renewing Microglia in the Mammalian Central Nervous System

2015

SummaryDuring early embryogenesis, microglia arise from yolk sac progenitors that populate the developing central nervous system (CNS), but how the tissue-resident macrophages are maintained throughout the organism’s lifespan still remains unclear. Here, we describe a system that allows specific, conditional ablation of microglia in adult mice. We found that the microglial compartment was reconstituted within 1 week of depletion. Microglia repopulation relied on CNS-resident cells, independent from bone-marrow-derived precursors. During repopulation, microglia formed clusters of highly proliferative cells that migrated apart once steady state was achieved. Proliferating microglia expressed …

Central Nervous SystemCellular differentiationCentral nervous systemInterleukin-1betaImmunologyCX3C Chemokine Receptor 1Bone Marrow CellsBiologyMiceCell MovementCX3CR1medicineAnimalsImmunology and AllergyProgenitor cellNeuroinflammationCell ProliferationReceptors Interleukin-1 Type IMicrogliaBase SequenceTumor Necrosis Factor-alphaMacrophagesCell DifferentiationSequence Analysis DNAHematopoietic Stem CellsCell biologyMice Inbred C57BLmedicine.anatomical_structureInfectious DiseasesImmunologyTumor necrosis factor alphaReceptors ChemokineMicrogliaSignal transductionSignal TransductionImmunity
researchProduct

Trans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic TH17 cells

2016

The cellular sources of interleukin 6 (IL-6) that are relevant for differentiation of the TH17 subset of helper T cells remain unclear. Here we used a novel strategy for the conditional deletion of distinct IL-6-producing cell types to show that dendritic cells (DCs) positive for the signaling regulator Sirpα were essential for the generation of pathogenic TH17 cells. Using their IL-6 receptor α-chain (IL-6Rα), Sirpα+ DCs trans-presented IL-6 to T cells during the process of cognate interaction. While ambient IL-6 was sufficient to suppress the induction of expression of the transcription factor Foxp3 in T cells, trans-presentation of IL-6 by DC-bound IL-6Rα (called 'IL-6 cluster signaling'…

0301 basic medicineCell typebiologyCellular differentiationImmunologyLymphocyte differentiationFOXP3Priming (immunology)medicine.disease_cause3. Good healthCell biologyAutoimmunity03 medical and health sciences030104 developmental biology0302 clinical medicineImmunologybiology.proteinmedicineImmunology and AllergyInterleukin 6Transcription factor030215 immunologyNature Immunology
researchProduct