6533b86dfe1ef96bd12ca075

RESEARCH PRODUCT

Interferon-γ-Driven iNOS: A Molecular Pathway to Terminal Shock in Arenavirus Hemorrhagic Fever

Lukas FlatzBeat A. KaufmannTommy RegenToni RiegerLukas BestmannMario KreutzfeldtBenedict FalletDaniel D. PinschewerDaniel D. PinschewerMelissa RemyUwe-karsten HanischDoron MerklerLifen XuCamille DorasMehmet Sahin

subject

0301 basic medicineMaleHemorrhagic Fevers ViralNitric Oxide Synthase Type IIBiologyLymphocytic Choriomeningitisddc:616.07Lymphocytic choriomeningitismedicine.disease_causeNitric OxideMicrobiologyViral hemorrhagic fever03 medical and health sciencesInterferon-gammaMice0302 clinical medicineVirologymedicineAnimalsHumansLymphocytic choriomeningitis virusLassa feverArenavirusddc:617medicine.diseasebiology.organism_classification3. Good healthNitric oxide synthaseMice Inbred C57BLDisease Models Animal030104 developmental biologyLassa virus030220 oncology & carcinogenesisShock (circulatory)Immunologybiology.proteinParasitologyFemalemedicine.symptomCytokine storm

description

Arenaviruses such as Lassa virus (LASV) cause hemorrhagic fever. Terminal shock is associated with a systemic cytokine storm, but the mechanisms are ill defined. Here we used HLA-A2-expressing mice infected with a monkey-pathogenic strain of lymphocytic choriomeningitis virus (LCMV-WE), a close relative of LASV, to investigate the pathophysiology of arenavirus hemorrhagic fever (AHF). AHF manifested as pleural effusions, edematous skin swelling, and serum albumin loss, culminating in hypovolemic shock. A characteristic cytokine storm included numerous pro-inflammatory cytokines and nitric oxide (NO) metabolites. Edema formation and terminal shock were abrogated in mice lacking inducible nitric oxide synthase (iNOS), although the cytokine storm persisted. iNOS was upregulated in the liver in a T cell- and interferon-γ (IFN-γ)-dependent fashion. Accordingly, blockade of IFN-γ or depletion of T cells repressed hepatic iNOS and prevented disease despite unchecked high-level viremia. We identify the IFN-γ-iNOS axis as an essential and potentially druggable molecular pathway to AHF-induced shock.

10.1016/j.chom.2017.07.008https://archive-ouverte.unige.ch/unige:98394