0000000000017953

AUTHOR

Javier Castells-gil

0000-0001-7931-3867

showing 72 related works from this author

Ti-based robust MOFs in the combined photocatalytic degradation of emerging organic contaminants.

2022

Photocatalysis process is a promising technology for environmental remediation. In the continuous search of new heterogeneous photocatalysts, metal–organic frameworks (MOFs) have recently emerged as a new type of photoactive materials for water remediation. Particularly, titaniumbased MOFs (Ti-MOFs) are considered one of the most appealing subclass of MOFs due to their promising optoelectronic and photocatalytic properties, high chemical stability, and unique structural features. However, considering the limited information of the reported studies, it is a hard task to determine if real-world water treatment is attainable using Ti-MOF photocatalysts. In this paper, via a screening with seve…

TitaniumPhotolysisMultidisciplinarySulfamethazineQuímicaMaterialsMetal-Organic FrameworksWater Purification
researchProduct

De novo synthesis of mesoporous photoactive titanium(IV)-organic frameworks with MIL-100 topology

2019

[EN] Most developments in the chemistry and applications of metal-organic frameworks (MOFs) have been made possible thanks to the value of reticular chemistry in guiding the unlimited combination of organic connectors and secondary building units (SBUs) into targeted architectures. However, the development of new titanium-frameworks still remains limited by the difficulties in controlling the formation of persistent Ti-SBUs with predetermined directionality amenable to the isoreticular approach. Here we report the synthesis of a mesoporous Ti-MOF displaying a MIL-100 topology. MIL-100(Ti) combines excellent chemical stability and mesoporosity, intrinsic to this archetypical family of porous…

Materials science010405 organic chemistryQuímica organometàl·licachemistry.chemical_elementGeneral ChemistryMicroporous material010402 general chemistryTopology01 natural sciences0104 chemical sciencesQUIMICA ORGANICAchemistryChemical stabilitySBusMesoporous materialPorous mediumPorosityTopology (chemistry)Titanium
researchProduct

Guest induced reversible on–off switching of elastic frustration in a 3D spin crossover coordination polymer with room temperature hysteretic behavio…

2021

A binary reversible switch between low-temperature multi-step spin crossover (SCO), through the evolution of the population γHS(T) with high-spin (HS)-low-spin (LS) sequence: HS1LS0 (state 1) ↔ HS2/3LS1/3 (state 2) ↔ HS1/2LS1/2 (state 3) ↔ HS1/3LS2/3 (state 4) ↔ HS0LS1 (state 5), and complete one step hysteretic spin transition featuring 20 K wide thermal hysteresis centred at 290 K occurs in the three-dimensional (3D) Hofmann-type porous coordination polymer {FeII(3,8phen)[Au(CN)2]2}·xPhNO2 (3,8phen = 3,8-phenanthroline, PhNO2 = nitrobenzene), made up of two identical interpenetrated pcu-type frameworks. The included PhNO2 guest (x = 1, 1·PhNO2) acts as a molecular wedge between the interp…

Materials scienceSpin statesCoordination polymermedia_common.quotation_subjectPopulationSpin transitionFrustration010402 general chemistry01 natural scienceschemistry.chemical_compoundSpin crossoverMetastability[CHIM.CRIS]Chemical Sciences/CristallographySymmetry breakingeducationComputingMilieux_MISCELLANEOUSmedia_common[PHYS]Physics [physics]education.field_of_studyCondensed matter physics010405 organic chemistryGeneral Chemistry0104 chemical sciencesChemistrychemistry[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]
researchProduct

Unlocking mixed oxides with unprecedented stoichiometries from heterometallic metalorganic frameworks for the catalytic hydrogenation of CO 2

2021

[EN] Their complex surface chemistry and high oxygen lattice mobilities place mixed-metal oxides among the most important families of materials. Modulation of stoichiometry in mixed-metal oxides has been shown to be a very powerful tool for tuning optical and catalytic properties. However, accessing different stoichiometries is not always synthetically possible. Here, we show that the thermal decomposition of the recently reported metal-organic framework MUV-101(Fe, Ti) results in the formation of carbon-supported titanomaghemite nanoparticles with an unprecedented Fe/Ti ratio close to 2, not achievable by soft-chemistry routes. The resulting titanomaghemite phase displays outstanding catal…

titanomaghemiteMaterials scienceRWGSNanoparticle02 engineering and technology010402 general chemistry01 natural sciencesReverse water-gas shiftWater-gas shift reactionMixed oxidesCatalysisTitanomaghemitePhase (matter)[CHIM.CRIS]Chemical Sciences/CristallographyPhysical and Theoretical Chemistrymixed oxidesOrganic ChemistryThermal decomposition[CHIM.MATE]Chemical Sciences/Material chemistry[CHIM.CATA]Chemical Sciences/Catalysis021001 nanoscience & nanotechnology0104 chemical sciencesChemical engineeringChemistry (miscellaneous)reverse water-gas shiftMetal-organic framework0210 nano-technologySelectivityMOF-mediated synthesisStoichiometry
researchProduct

Selective Implantation of Diamines for Cooperative Catalysis in Isoreticular Heterometallic Titanium–Organic Frameworks

2021

[EN] We introduce the first example of isoreticular titanium-organic frameworks, MUV-10 and MUV-12, to show how the different affinity of hard Ti(IV) and soft Ca(II) metal sites can be used to direct selective grafting of amines. This enables the combination of Lewis acid titanium centers and available -NH, sites in two sizeable pores for cooperative cycloaddition of CO2 to epoxides at room temperature and atmospheric pressure. The selective grafting of molecules to heterometallic clusters adds up to the pool of methodologies available for controlling the positioning and distribution of chemical functions in precise positions of the framework required for definitive control of pore chemistr…

Materials science010405 organic chemistrychemistry.chemical_elementGeneral ChemistryGeneral MedicineGrafting010402 general chemistryCombinatorial chemistry01 natural sciencesCatalysisCycloadditionCatalysis0104 chemical sciencesMetalchemistryvisual_artvisual_art.visual_art_mediumMoleculeLewis acids and basesTitaniumAngewandte Chemie International Edition
researchProduct

Structural reorganization in a hydrogen-bonded organic framework

2018

Self-recognition of 3,3′,5,5′-azobenzenetetracarboxylic acid drives the formation of a grid-like anionic hydrogen-bonded framework with channels occupied by organic cations. This supramolecular solid is capable of reorganizing its connectivity in the presence of specific guests into a different crystalline architecture by sequential dissolution and recrystallization.

Hydrogen010405 organic chemistryChemistrySupramolecular chemistryQuímica organometàl·licaRecrystallization (metallurgy)chemistry.chemical_elementGeneral Chemistry010402 general chemistry01 natural sciencesCatalysis0104 chemical sciencesChemical engineeringMaterials ChemistryCristallsDissolution
researchProduct

Reversible guest-induced gate-opening with multiplex spin crossover responses in two-dimensional Hofmann clathrates.

2021

Spin crossover (SCO) compounds are very attractive types of switchable materials due to their potential applications in memory devices, actuators or chemical sensors. Rational chemical tailoring of these switchable compounds is key for achieving new functionalities in synergy with the spin state change. However, the lack of precise structural information required to understand the chemical principles that control the SCO response with external stimuli may eventually hinder further development of spin switching-based applications. In this work, the functionalization with an amine group in the two-dimensional (2D) SCO compound {Fe(5-NH2Pym)2[MII(CN)4]} (1M, 5-NH2Pym = 5-aminopyrimidine, MII =…

Materials scienceSpin states010405 organic chemistryKineticsGeneral Chemistry010402 general chemistry01 natural sciences3. Good health0104 chemical sciencesChemistryChemical physicsSpin crossoverDesorptionSurface modificationMoleculeSpin (physics)Single crystalChemical science
researchProduct

Divergent Adsorption-Dependent Luminescence of Amino-Functionalized Lanthanide Metal-Organic Frameworks for Highly Sensitive NO2 Sensors

2020

International audience; A novel gas sensing mechanism exploiting lanthanide luminescence modulation upon NO2 adsorption is demonstrated here. Two isostructural lanthanide-based metal–organic frameworks (MOFs) are used, including an amino group as the sensitive recognition center for NO2 molecules. The transfer of energy from the organic ligands to Ln is strongly dependent on the presence of NO2, resulting in an unprecedented photoluminescent sensing scheme. Thereby, NO2 exposition triggers either a reversible enhancement or a decrease in the luminescence intensity, depending on the lanthanide ion (Eu or Tb). Our experimental studies combined with density functional theory and complete activ…

LanthanideIonsPhotoluminescenceLuminescenceChemistryLigandAb initioMetal organic frameworks02 engineering and technology[CHIM.MATE]Chemical Sciences/Material chemistryMolecules010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistryLigands01 natural sciences0104 chemical sciences[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryAdsorptionGeneral Materials ScienceMetal-organic frameworkPhysical and Theoretical ChemistryIsostructural0210 nano-technologyLuminescence
researchProduct

Surfactant-assisted synthesis of titanium nanoMOFs for thin film fabrication

2021

We use dodecanoic acid as a modulator to yield titanium MOF nanoparticles with good control of size and colloid stability and minimum impact to the properties of the framework to enable direct fabrication of crystalline, porous thin films. ispartof: CHEMICAL COMMUNICATIONS vol:57 issue:72 pages:9040-9043 ispartof: location:England status: published

FabricationYield (engineering)Materials scienceChemistry MultidisciplinaryNanoparticlechemistry.chemical_elementGood control02 engineering and technology010402 general chemistry01 natural sciencesCatalysisMETAL-ORGANIC FRAMEWORKSColloidPulmonary surfactantMaterials ChemistryThin filmScience & Technologytechnology industry and agricultureMetals and AlloysGeneral Chemistryequipment and supplies021001 nanoscience & nanotechnologyeye diseases0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsChemistrySIZEchemistryChemical engineeringPhysical SciencesACIDCeramics and CompositesNH2-MIL-125(TI)sense organs0210 nano-technologyTitaniumChemical Communications
researchProduct

Innentitelbild: Selective Implantation of Diamines for Cooperative Catalysis in Isoreticular Heterometallic Titanium–Organic Frameworks (Angew. Chem.…

2021

chemistryPolymer chemistrychemistry.chemical_elementGeneral MedicineTitaniumCatalysisAngewandte Chemie
researchProduct

Correction: Effect of nanostructuration on the spin crossover transition in crystalline ultrathin films

2019

Correction for ‘Effect of nanostructuration on the spin crossover transition in crystalline ultrathin films’ by Víctor Rubio-Giménez et al., Chem. Sci., 2019, DOI: 10.1039/c8sc04935a.

Materials scienceCondensed matter physicsSpin crossoverGeneral ChemistryChemical Science
researchProduct

Inside Cover: Selective Implantation of Diamines for Cooperative Catalysis in Isoreticular Heterometallic Titanium–Organic Frameworks (Angew. Chem. I…

2021

Materials sciencechemistryPolymer chemistryINTchemistry.chemical_elementCover (algebra)General ChemistryCatalysisTitaniumCatalysisAngewandte Chemie International Edition
researchProduct

Correction: One-pot synthesis of a new generation of hybrid bisphosphonate polyoxometalate gold nanoparticles as antibiofilm agents

2019

A reduced polyoxovanadate functionalized with bisphosphonate molecules was synthesized and used to prepare in one step hybrid organic–inorganic polyoxometalate decorated gold nanoparticles. These new composites were shown to strongly inhibit P. aeruginosa and S. epidermidis biofilm growth, with the three components constituting the nanoparticles (Au0 core, vanadium and alendronate) acting synergistically.

medicine.medical_treatmentOne-pot synthesisGeneral EngineeringVanadiumchemistry.chemical_elementNanoparticleBioengineeringOne-StepGeneral ChemistryBisphosphonateCombinatorial chemistryAtomic and Molecular Physics and OpticschemistryColloidal goldPolyoxometalatemedicineMoleculeGeneral Materials ScienceNanoscale Advances
researchProduct

Heterometallic Titanium–Organic Frameworks by Metal-Induced Dynamic Topological Transformations

2020

Reticular chemistry has boosted the design of thousands of metal and covalent organic frameworks for unlimited chemical compositions, structures, and sizable porosities. The ability to generate porous materials at will on the basis of geometrical design concepts is responsible for the rapid growth of the field and the increasing number of applications derived. Despite their promising features, the synthesis of targeted homo- and heterometallic titanium–organic frameworks amenable to these principles is relentlessly limited by the high reactivity of this metal in solution that impedes the controlled assembly of titanium molecular clusters. We describe an unprecedented methodology for the syn…

Solvothermal synthesischemistry.chemical_elementGeneral Chemistry010402 general chemistry01 natural sciencesBiochemistryCatalysis0104 chemical sciencesMetalCrystalColloid and Surface ChemistrychemistryTransition metalChemical engineeringvisual_artvisual_art.visual_art_mediumSBusIsostructuralMesoporous materialTitaniumJournal of the American Chemical Society
researchProduct

Heterometallic Titanium-Organic Frameworks as Dual Metal Catalysts for Synergistic Non-Buffered Hydrolysis of Nerve Agent Simulants

2020

Heterometallic metal-organic frameworks (MOFs) can offer important advantages over their homometallic counterparts to enable targeted modification of their adsorption, structural response, electronic structure, or chemical reactivity. However, controlling metal distribution in these solids still remains a challenge. The family of mesoporous titanium-organic frameworks, MUV-101(M), displays heterometallic TiM2 nodes assembled from direct reaction of Ti(IV) and M(II) salts. We use the degradation of nerve agent simulants to demonstrate that only TiFe2 nodes are capable of catalytic degradation in non-buffered conditions. By using an integrative experimental-computational approach, we rational…

General Chemical Engineeringchemistry.chemical_element02 engineering and technology010402 general chemistryHeterogeneous catalysis01 natural sciencesBiochemistryCatalysisMetalchemistry.chemical_compoundHydrolysisMaterials ChemistryEnvironmental ChemistrySynergistic catalysisLewis acids and basesBimetallic stripBiochemistry (medical)General ChemistryPurple acid phosphatases021001 nanoscience & nanotechnologyCombinatorial chemistry0104 chemical scienceschemistryvisual_artvisual_art.visual_art_mediumChemical stabilityTrimesic acid0210 nano-technologyBrønsted–Lowry acid–base theoryTitanium
researchProduct

Electronic, Structural and Functional Versatility in Tetrathiafulvalene-Lanthanide Metal-Organic Frameworks

2019

<div>Tetrathiafulvalene-Lanthanide (TTF-Ln) Metal-Organic Frameworks (MOFs) are an interesting class of multifunctional materials in which porosity can be combined with electronic properties such as electrical conductivity, redox activity, luminescence and magnetism. Herein we report a new family of isostructural TTF-Ln MOFs, denoted as <b>MUV-5(Ln)</b> (Ln = Gd, Tb, Dy, Ho, Er), exhibiting semiconducting properties as a consequence of the short intermolecular S···S contacts established along the chain direction between partially oxidised TTF moieties. In addition, this family shows photoluminescence properties and single-molecule magnetic behaviour, finding near-infrared …

LanthanideMaterials sciencePhotoluminescence010405 organic chemistryMagnetismOrganic ChemistryGeneral ChemistryElectronic structureConductivitat elèctrica010402 general chemistry01 natural sciencesCatalysis0104 chemical sciencesCrystallographychemistry.chemical_compoundchemistryMetal-organic frameworkSingle-molecule magnetIsostructuralMaterialsTetrathiafulvalene
researchProduct

Fe-MOF Materials as Precursors for the Catalytic Dehydrogenation of Isobutane.

2022

We investigate the use of a series of iron-based metal–organic frameworks as precursors for the manufacturing of isobutane dehydrogenation catalysts. Both the as-prepared and spent catalysts were characterized by PXRD, XPS, PDF, ICP-OES, and CHNS+O to determine the physicochemical properties of the materials and the active phases responsible for the catalytic activity. In contrast to the previous literature, our results indicate that (i) the formation of metallic Fe under reaction conditions results in secondary cracking and coke formation; (ii) the formation of iron carbide only contributes to coke formation; and (iii) the stabilization of the Fe2+ species is paramount to achieve sta…

General ChemistryQuímicaCatalysis
researchProduct

Crystalline supramolecular organic frameworksviahydrogen-bonding between nucleobases

2021

We report a crystalline supramolecular framework assembled by H-bonding interactions between covalently fused monomers equipped with two guanine-cytosine nucleobase pairs.

Models MolecularMacromolecular SubstancesSupramolecular chemistrymacromolecular substances010402 general chemistry01 natural sciencesCatalysisNucleobasechemistry.chemical_compoundNucleic AcidsPolymer chemistryMaterials Chemistry010405 organic chemistryHydrogen bondtechnology industry and agricultureMetals and AlloysHydrogen BondingGeneral Chemistry0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMonomerchemistryCovalent bondCeramics and CompositesNucleic Acid Conformationsense organsChemical Communications
researchProduct

Permanent Porosity in Hydroxamate Titanium-Organic Polyhedra.

2021

Following the synthesis of hydroxamate titanium–organic frameworks, we now extend these siderophore-type linkers to the assembly of the first titanium–organic polyhedra displaying permanent porosity. Mixed-linker versions of this molecular cage (cMUV-11) are also used to demonstrate the effect of pore chemistry in accessing high surface areas of near 1200 m2·g–1.

Colloid and Surface Chemistry010405 organic chemistryGeneral Chemistry010402 general chemistry01 natural sciencesBiochemistryCatalysis0104 chemical sciencesJournal of the American Chemical Society
researchProduct

Effect of nanostructuration on the spin crossover transition in crystalline ultrathin films† †Electronic supplementary information (ESI) available: M…

2019

Film thickness and microstructure critically affect the spin crossover transition of a 2D coordination polymer.

FabricationMaterials scienceChemistry MultidisciplinarySpin transitionNanotechnology010402 general chemistry01 natural sciencesCondensed Matter::Materials ScienceTHIN-FILMSSpin crossoverMETAL-ORGANIC FRAMEWORKCondensed Matter::SuperconductivityNANOPARTICLESThin film[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]Nanoscopic scaleTEMPERATUREComputingMilieux_MISCELLANEOUSchemistry.chemical_classificationQuantitative Biology::BiomoleculesScience & Technology010405 organic chemistryGeneral ChemistryPolymerQuímicaMicrostructureTHERMAL HYSTERESIS0104 chemical sciencesCondensed Matter::Soft Condensed MatterChemistrySIZENanocrystalchemistryLAYERVACUUMPhysical SciencesPHASE-TRANSITIONSCondensed Matter::Strongly Correlated ElectronsCOORDINATION POLYMERSChemical Science
researchProduct

Ultrathin Films of 2D Hofmann-Type Coordination Polymers: Influence of Pillaring Linkers on Structural Flexibility and Vertical Charge Transport

2019

Searching for novel materials and controlling their nanostructuration into electronic devices is a challenging task ahead of chemists and chemical engineers. Even more so when this new application requires an exquisite control over the morphology, crystallinity, roughness and orientation of the films produced. In this context, it is of critical importance to analyze the influence of the chemical composition of perspective materials on their properties at the nanoscale. We report the fabrication of ultrathin films (thickness < 30 nm) of a family of FeII Hofmann-like coordination polymers by using an optimized liquid phase epitaxy (LPE) set-up. The series [Fe(L)2{Pt(CN)4}] (L = pyridine, pyri…

TechnologyMaterials scienceGeneral Chemical EngineeringMaterials ScienceQuímica organometàl·licaMaterials Science MultidisciplinaryNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesTask (project management)METAL-ORGANIC FRAMEWORKSTHIN-FILMSNANOPARTICLESMaterials ChemistryElectronicsMOLECULAR WIRESLIQUID-METALchemistry.chemical_classificationFlexibility (engineering)Science & TechnologyCONDUCTANCEChemistry PhysicalSPIN-CROSSOVERCharge (physics)General ChemistryPolymerNANOSHEETS021001 nanoscience & nanotechnology0104 chemical sciencesChemistrychemistryLAYERPhysical SciencesMaterials nanoestructurats0210 nano-technologyTRANSITIONChemistry of Materials
researchProduct

Surface functionalization of metal-organic frameworks for improved moisture resistance

2018

Metal-organic frameworks (MOFs) are a class of porous inorganic materials with promising properties in gas storage and separation, catalysis and sensing. However, the main issue limiting their applicability is their poor stability in humid conditions. The common methods to overcome this problem involve the formation of strong metal-linker bonds by using highly charged metals, which is limited to a number of structures, the introduction of alkylic groups to the framework by post-synthetic modification (PSM) or chemical vapour deposition (CVD) to enhance overall hydrophobicity of the framework. These last two usually provoke a drastic reduction of the porosity of the material. These strategie…

Materials scienceSurface PropertiesGeneral Chemical EngineeringQuímica organometàl·lica02 engineering and technologyChemical vapor depositionengineering.material010402 general chemistryHydrophobic coating01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyCatalysisAdsorptionCoatingCompostos orgànicsPorosityAlkylMetal-Organic FrameworksCatecholase biomimeticschemistry.chemical_classificationGeneral Immunology and MicrobiologyGeneral NeuroscienceWaterWater stabilityMetal-organic frameworks021001 nanoscience & nanotechnology0104 chemical sciencesChemistrychemistryPolymerizationChemical engineeringSurface functionalizationengineeringSurface modificationMetal-organic frameworkAdsorption0210 nano-technologyOxidation-ReductionPorosityFunctionalized catechols
researchProduct

Chemical Engineering of Photoactivity in Heterometallic Titanium–Organic Frameworks by Metal Doping

2018

[EN] We report a new family of titanium-organic frameworks that enlarges the limited number of crystalline, porous materials available for this metal. They are chemically robust and can be prepared as single crystals at multi-gram scale from multiple precursors. Their heterometallic structure enables engineering of their photoactivity by metal doping rather than by linker functionalization. Compared to other methodologies based on the post-synthetic metallation of MOFs, our approach is well-fitted for controlling the positioning of dopants at an atomic level to gain more precise control over the band-gap and electronic properties of the porous solid. Changes in the band-gap are also rationa…

Metal-organic frameworks PhotocatalysisMaterials scienceQuímica organometàl·licachemistry.chemical_element010402 general chemistry01 natural sciencesCatalysisMetalQUIMICA ORGANICATitaniumDopant010405 organic chemistryDopingGeneral MedicineTitaniGeneral Chemistry0104 chemical sciencesMetal dopingChemical engineeringchemistryvisual_artvisual_art.visual_art_mediumPhotocatalysisSurface modificationBand-gap engineeringMetal-organic frameworkPorous mediumTitaniumAngewandte Chemie International Edition
researchProduct

Implementation of slow magnetic relaxation in a SIM-MOF through a structural rearrangement

2018

&lt;p&gt;Here we report the structural flexibility of a Dy-based Single-Ion Magnet MOF in which its magnetic properties can be modified through a ligand substitution process involving an increase of the charge density of the coordination environment.&lt;/p&gt;

Materials scienceFlexibility (anatomy)Magnetism010405 organic chemistryLigandQuímica organometàl·licaCharge density010402 general chemistryProcess substitution01 natural sciences3. Good health0104 chemical sciencesInorganic Chemistrymedicine.anatomical_structureChemical physicsMagnetmedicineSingle-molecule magnetMagnetic relaxationDalton Transactions
researchProduct

A Crystalline 1D Dynamic Covalent Polymer

2022

The synthesis of crystalline one-dimensional polymers provides a fundamental understanding about the structure??? property relationship in polymeric materials and allows the preparation of materials with enhanced thermal, mechanical, and conducting properties. However, the synthesis of crystalline one-dimensional polymers remains a challenge because polymers tend to adopt amorphous or semicrystalline phases. Herein, we report the synthesis of a crystalline one-dimensional polymer in solution by dynamic covalent chemistry. The structure of the polymer has been unambiguously confirmed by microcrystal electron diffraction that together with charge transport studies and theoretical calculations…

electronColloid and Surface ChemistrytransportGeneral Chemistryorganic frameworksBiochemistrysolid-stateCatalysisJournal of the American Chemical Society
researchProduct

Surface Functionalization of Metal–Organic Framework Crystals with Catechol Coatings for Enhanced Moisture Tolerance

2021

Robust catechol coatings for enhanced moisture tolerance were produced in one step by direct reaction of Hong Kong University of Science and Technology (HKUST) with synthetic catechols. We ascribe the rapid formation of homogeneous coatings around the metal–organic framework particles to the biomimetic catalytic activity of Cu(II) dimers in the external surface of the crystals. Use of fluorinated catechols results in hydrophobic, permeable coatings that protect HKUST from water degradation while retaining close to 100% of its original sorption capacity.

Materials scienceInorganic chemistry02 engineering and technologyMetal−organic frameworks010402 general chemistryHydrophobic coating01 natural sciencesCatalysischemistry.chemical_compoundGeneral Materials ScienceMaterialsCatecholase biomimeticsCatecholMoistureSorptionQuímicaWater stability021001 nanoscience & nanotechnologySuperhydrophobic coating0104 chemical scienceschemistrySurface functionalizationSurface modificationMetal-organic framework0210 nano-technologyScience technology and societyACS Applied Materials & Interfaces
researchProduct

Bottom‐Up Fabrication of Semiconductive Metal-Organic Framework Ultrathin Films

2018

Though generally considered insulating, recent progress on the discovery of conductive porous metal-organic frameworks (MOFs) offers new opportunities for their integration as electroactive components in electronic devices. Compared to classical semiconductors, these metal-organic hybrids combine the crystallinity of inorganic materials with easier chemical functionalization and processability. Still, future development depends on the ability to produce high-quality films with fine control over their orientation, crystallinity, homogeneity, and thickness. Here self-assembled monolayer substrate modification and bottom-up techniques are used to produce preferentially oriented, ultrathin, con…

FabricationMaterials sciencebusiness.industryMechanical EngineeringQuímica organometàl·licaNanotechnologySelf-assembled monolayer02 engineering and technologyConductivitat elèctrica010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesCrystallinitySemiconductorMechanics of MaterialsMonolayerGeneral Materials ScienceMetal-organic framework0210 nano-technologybusinessPorosityElectrical conductor
researchProduct

Photoactivity and Chemical Reactivity in Titanium(IV)-Organic Frameworks

2020

La presente tesis doctoral ha sido realizada como compendio de publicaciones y lleva por título “Fotoactividad y reactividad química en redes metal-orgánicas de titanio(IV)” (Photoactivity and Chemical Reactivity in Titanium(IV)-Organic Frameworks). La tesis se encuentra dividida en cinco capítulos además de un capítulo final de conclusiones y un resumen en castellano. El primer capítulo trata de una introducción acerca de las redes metal-orgánicas (del inglés Metal-Organic Frameworks, MOFs) de titanio(IV) existentes hasta la fecha para dar una visión general de su variedad estructural, así como de las estrategias sintéticas empleadas y las propiedades fotocatalíticas de estos materiales. E…

hydrolytical stabilityUNESCO::QUÍMICA::Química inorgánicatitanium:QUÍMICA::Química inorgánica [UNESCO]dual-metal catalysismetal-organic frameworksphotocatalysis
researchProduct

Hydroxamate Titanium–Organic Frameworks and the Effect of Siderophore-Type Linkers over Their Photocatalytic Activity

2019

The chemistry of metal–organic frameworks (MOFs) relies on the controlled linking of organic molecules and inorganic secondary building units to assemble an unlimited number of reticular frameworks. However, the design of porous solids with chemical stability still remains limited to carboxylate or azolate groups. There is a timely opportunity to develop new synthetic platforms that make use of unexplored metal binding groups to produce metal–linker joints with hydrolytic stability. Living organisms use siderophores (iron carriers in Greek) to effectively assimilate iron in soluble form. These compounds make use of hard oxo donors as hydroxamate or catecholate groups to coordinate metal Lew…

SiderophoreQuímica organometàl·licachemistry.chemical_elementGeneral ChemistryTitani010402 general chemistry01 natural sciencesBiochemistryCombinatorial chemistryCatalysis0104 chemical sciencesCatalysisMetalchemistry.chemical_compoundColloid and Surface Chemistrychemistryvisual_artvisual_art.visual_art_mediumPhotocatalysisChemical stabilityLewis acids and basesCarboxylateTitaniumJournal of the American Chemical Society
researchProduct

CCDC 2018380: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[octakis(mu-cyano)-tetrakis(5-aminopyrimidine)-di-iron(ii)-di-palladium(ii) dihydrate]Experimental 3D Coordinates
researchProduct

CCDC 2018391: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[octakis(mu-cyano)-tetrakis(5-aminopyrimidine)-di-iron(ii)-di-platinum(ii) hydrate]Experimental 3D Coordinates
researchProduct

CCDC 1934948: Experimental Crystal Structure Determination

2019

Related Article: Javier Castells-Gil, Samuel Mañas-Valero, Iñigo J. Vitórica-Yrezábal, Duarte Ananias, João Rocha, Raul Santiago, Stefan T. Bromley, José J. Baldoví, Eugenio Coronado, Manuel Souto, Guillermo Mínguez Espallargas|2019|Chem.-Eur.J.|25|12636|doi:10.1002/chem.201902855

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[bis(mu-44'-{2-[45-bis(4-carboxylatophenyl)-2H-13-dithiol-2-ylidene]-2H-13-dithiole-45-diyl}dibenzoato)-(mu-acetato)-aqua-tri-gadolinium unknown solvate hydrate]Experimental 3D Coordinates
researchProduct

CCDC 2016312: Experimental Crystal Structure Determination

2020

Related Article: Lucía Piñeiro-López, Francisco-Javier Valverde-Muñoz, Elzbieta Trzop, M. Carmen Muñoz, Maksym Seredyuk, Javier Castells-Gil, Iván da Silva, Carlos Martí-Gastaldo, Eric Collet, José Antonio Real|2021|Chemical Science|12|1317|doi:10.1039/D0SC04420B

Space GroupCrystallographycatena-(tetrakis(mu-cyano)-(mu-38-phenanthroline)-di-gold-iron)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2018392: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[octakis(mu-cyano)-tetrakis(5-aminopyrimidine)-di-iron(ii)-di-palladium(ii) dihydrate]Experimental 3D Coordinates
researchProduct

CCDC 2106824: Experimental Crystal Structure Determination

2021

Related Article: Bele��n Lerma-Berlanga, Javier Castells-Gil, Carolina R. Ganivet, Neyvis Almora-Barrios, Javier Gonza��lez-Platas, Oscar Fabelo, Natalia M. Padial, Carlos Marti��-Gastaldo|2021|J.Am.Chem.Soc.|143|21195|doi:10.1021/jacs.1c09278

Space GroupCrystallographyCrystal Systemtetrakis(mu-[2-amino-14-phenylenebis(carbonylazanediyl)]bis(oxido))-tetrakis(mu-[14-phenylenebis(carbonylazanediyl)]bis(oxido))-tetrakis(mu-N1N4-dioxidobenzene-14-dicarboximidato)-octa-titanium(iv) NN-dimethylformamide solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1576297: Experimental Crystal Structure Determination

2018

Related Article: Javier Castells-Gil, Natalia M. Padial, Carlos Martí-Gastaldo|2018|New J.Chem.|42|16138|doi:10.1039/C8NJ02738B

Space GroupCrystallographyCrystal Systembis(guanidinium) 33'-(diazene-12-diyl)bis(5-carboxybenzoate) dihydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2010363: Experimental Crystal Structure Determination

2020

Related Article: Lucía Piñeiro-López, Francisco-Javier Valverde-Muñoz, Elzbieta Trzop, M. Carmen Muñoz, Maksym Seredyuk, Javier Castells-Gil, Iván da Silva, Carlos Martí-Gastaldo, Eric Collet, José Antonio Real|2021|Chemical Science|12|1317|doi:10.1039/D0SC04420B

Space GroupCrystallographyCrystal Systemcatena-(tetrakis(mu-cyano)-(mu-38-phenanthroline)-di-gold-iron nitrobenzene solvate)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2106822: Experimental Crystal Structure Determination

2021

Related Article: Bele��n Lerma-Berlanga, Javier Castells-Gil, Carolina R. Ganivet, Neyvis Almora-Barrios, Javier Gonza��lez-Platas, Oscar Fabelo, Natalia M. Padial, Carlos Marti��-Gastaldo|2021|J.Am.Chem.Soc.|143|21195|doi:10.1021/jacs.1c09278

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametershexakis(mu-[2-methoxy-14-phenylenebis(carbonylazanediyl)]bis(oxido))-bis(mu-[14-phenylenebis(carbonylazanediyl)]bis(oxido))-tetrakis(mu-N1N4-dioxidobenzene-14-dicarboximidato)-octa-titanium(iv) NN-dimethylformamide solvateExperimental 3D Coordinates
researchProduct

CCDC 1576296: Experimental Crystal Structure Determination

2018

Related Article: Javier Castells-Gil, Natalia M. Padial, Carlos Martí-Gastaldo|2018|New J.Chem.|42|16138|doi:10.1039/C8NJ02738B

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(dimethylammonium) 33'-(diazene-12-diyl)bis(5-carboxybenzoate)Experimental 3D Coordinates
researchProduct

CCDC 2018389: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1960226: Experimental Crystal Structure Determination

2020

Related Article: Javier Castells-Gil, Natalia M. Padial, Neyvis Almora-Barrios, Rodrigo Gil-San-Millán, María Romero-Ángel, Virginia Torres, Iván da Silva, Bruno C.J. Vieira, Joao C. Waerenborgh, Jaciek Jagiello, Jorge A.R. Navarro, Sergio Tatay, Carlos Martí-Gastaldo|2020|Cell Press: Chem|6|3118|doi:10.1016/j.chempr.2020.09.002

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1855292: Experimental Crystal Structure Determination

2018

Related Article: Javier Castells-Gil, José J. Baldoví, Carlos Martí-Gastaldo, Guillermo Mínguez Espallargas|2018|Dalton Trans.|47|14734|doi:10.1039/C8DT03421D

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[(mu-5-[(3-carboxy-5-carboxylatophenyl)diazenyl]benzene-13-dicarboxylato)-diaqua-dysprosium hydrate]Experimental 3D Coordinates
researchProduct

CCDC 2018381: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[tetrakis(mu-cyano)-bis(pyrimidin-5-amine)-platinum(ii)-iron(ii)]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2010365: Experimental Crystal Structure Determination

2020

Related Article: Lucía Piñeiro-López, Francisco-Javier Valverde-Muñoz, Elzbieta Trzop, M. Carmen Muñoz, Maksym Seredyuk, Javier Castells-Gil, Iván da Silva, Carlos Martí-Gastaldo, Eric Collet, José Antonio Real|2021|Chemical Science|12|1317|doi:10.1039/D0SC04420B

Space GroupCrystallographyCrystal Systemcatena-(tetrakis(mu-cyano)-(mu-38-phenanthroline)-di-gold-iron nitrobenzene solvate)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1934950: Experimental Crystal Structure Determination

2019

Related Article: Javier Castells-Gil, Samuel Mañas-Valero, Iñigo J. Vitórica-Yrezábal, Duarte Ananias, João Rocha, Raul Santiago, Stefan T. Bromley, José J. Baldoví, Eugenio Coronado, Manuel Souto, Guillermo Mínguez Espallargas|2019|Chem.-Eur.J.|25|12636|doi:10.1002/chem.201902855

Space GroupCrystallographycatena-[bis(mu-44'-{2-[45-bis(4-carboxylatophenyl)-2H-13-dithiol-2-ylidene]-2H-13-dithiole-45-diyl}dibenzoato)-(mu-acetato)-aqua-tri-holmium unknown solvate hydrate]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1855294: Experimental Crystal Structure Determination

2018

Related Article: Javier Castells-Gil, José J. Baldoví, Carlos Martí-Gastaldo, Guillermo Mínguez Espallargas|2018|Dalton Trans.|47|14734|doi:10.1039/C8DT03421D

Space GroupCrystallographyCrystal Systemcatena-[(mu-5-[(3-carboxy-5-carboxylatophenyl)diazenyl]benzene-13-dicarboxylato)-dysprosium hydrate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1884457: Experimental Crystal Structure Determination

2019

Related Article: Natalia M. Padial, Javier Castells-Gil, Neyvis Almora-Barrios, Mariam Barawi, Ivan da Silva, Víctor A. de la Peña O’Shea and Carlos Martí-Gastaldo|2019|J.Am.Chem.Soc.|141|13124|doi:10.1021/jacs.9b04915

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(tris(mu-N1N4-dioxybenzene-14-dicarboxamide)-di-titanium dimethylformamide solvate)Experimental 3D Coordinates
researchProduct

CCDC 1965235: Experimental Crystal Structure Determination

2020

Related Article: Natalia M. Padial, Bel��n Lerma-Berlanga, Neyvis Almora-Barrios, Javier Castells-Gil, Iv��n da Silva, Mar����a de la Mata, Sergio I. Molina, Jes��s Hern��ndez-Saz, Ana E. Platero-Prats, Sergio Tatay, Carlos Mart����-Gastaldo|2019|J.Am.Chem.Soc.|142|6638|doi:10.1021/jacs.0c00117

Space GroupCrystallographycatena-[tetratriacontakis(135-tricarboxylato-benzene)-heptadecakis(mu-oxo)-henipentaconta-aqua-tetratriaconta-cobalt(ii)-heptadeca-titanium(iv) hydrate]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2018390: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[octakis(mu-cyano)-tetrakis(5-aminopyrimidine)-di-iron(ii)-di-platinum(ii) methanol solvate]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1910991: Experimental Crystal Structure Determination

2019

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetrakis(mu-cyano)-bis(pyrimidine)-iron-platinum hydrate]Experimental 3D Coordinates
researchProduct

CCDC 1934947: Experimental Crystal Structure Determination

2019

Related Article: Javier Castells-Gil, Samuel Mañas-Valero, Iñigo J. Vitórica-Yrezábal, Duarte Ananias, João Rocha, Raul Santiago, Stefan T. Bromley, José J. Baldoví, Eugenio Coronado, Manuel Souto, Guillermo Mínguez Espallargas|2019|Chem.-Eur.J.|25|12636|doi:10.1002/chem.201902855

catena-[(mu-hydrogen 44'-{2-[45-bis(4-carboxylatophenyl)-2H-13-dithiol-2-ylidene]-2H-13-dithiole-45-diyl}dibenzoato)-aqua-dysprosium acetic acid unknown solvate]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2018379: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[tetrakis(mu-cyano)-bis(pyrimidin-5-amine)-palladium(ii)-iron(ii)]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2010361: Experimental Crystal Structure Determination

2020

Related Article: Lucía Piñeiro-López, Francisco-Javier Valverde-Muñoz, Elzbieta Trzop, M. Carmen Muñoz, Maksym Seredyuk, Javier Castells-Gil, Iván da Silva, Carlos Martí-Gastaldo, Eric Collet, José Antonio Real|2021|Chemical Science|12|1317|doi:10.1039/D0SC04420B

Space GroupCrystallographyCrystal Systemcatena-(tetrakis(mu-cyano)-(mu-38-phenanthroline)-di-gold-iron nitrobenzene solvate)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1934945: Experimental Crystal Structure Determination

2019

Related Article: Javier Castells-Gil, Samuel Mañas-Valero, Iñigo J. Vitórica-Yrezábal, Duarte Ananias, João Rocha, Raul Santiago, Stefan T. Bromley, José J. Baldoví, Eugenio Coronado, Manuel Souto, Guillermo Mínguez Espallargas|2019|Chem.-Eur.J.|25|12636|doi:10.1002/chem.201902855

Space GroupCrystallographycatena-[bis(mu-44'-{2-[45-bis(4-carboxylatophenyl)-2H-13-dithiol-2-ylidene]-2H-13-dithiole-45-diyl}dibenzoato)-(mu-acetato)-(NN-dimethylformamide)-aqua-tri-dysprosium unknown solvate]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2018384: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[octakis(mu-cyano)-tetrakis(5-aminopyrimidine)-di-iron(ii)-di-palladium(ii) dihydrate]Experimental 3D Coordinates
researchProduct

CCDC 2018386: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographycatena-[octakis(mu-cyano)-tetrakis(5-aminopyrimidine)-di-iron(ii)-di-platinum(ii) ethanol solvate]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1910989: Experimental Crystal Structure Determination

2019

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetrakis(mu-cyano)-bis(isoquinoline)-iron(ii)-platinum(ii)]Experimental 3D Coordinates
researchProduct

CCDC 1934949: Experimental Crystal Structure Determination

2019

Related Article: Javier Castells-Gil, Samuel Mañas-Valero, Iñigo J. Vitórica-Yrezábal, Duarte Ananias, João Rocha, Raul Santiago, Stefan T. Bromley, José J. Baldoví, Eugenio Coronado, Manuel Souto, Guillermo Mínguez Espallargas|2019|Chem.-Eur.J.|25|12636|doi:10.1002/chem.201902855

Space GroupCrystallographycatena-[bis(mu-44'-{2-[45-bis(4-carboxylatophenyl)-2H-13-dithiol-2-ylidene]-2H-13-dithiole-45-diyl}dibenzoato)-(mu-acetato)-aqua-tri-terbium unknown solvate hydrate]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2018388: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographyCrystal Systemcatena-[octakis(mu-cyano)-tetrakis(5-aminopyrimidine)-di-iron(ii)-di-palladium(ii) methanol solvate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2010360: Experimental Crystal Structure Determination

2020

Related Article: Lucía Piñeiro-López, Francisco-Javier Valverde-Muñoz, Elzbieta Trzop, M. Carmen Muñoz, Maksym Seredyuk, Javier Castells-Gil, Iván da Silva, Carlos Martí-Gastaldo, Eric Collet, José Antonio Real|2021|Chemical Science|12|1317|doi:10.1039/D0SC04420B

Space GroupCrystallographyCrystal Systemcatena-(tetrakis(mu-cyano)-(mu-38-phenanthroline)-di-gold-iron nitrobenzene solvate)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1934946: Experimental Crystal Structure Determination

2019

Related Article: Javier Castells-Gil, Samuel Mañas-Valero, Iñigo J. Vitórica-Yrezábal, Duarte Ananias, João Rocha, Raul Santiago, Stefan T. Bromley, José J. Baldoví, Eugenio Coronado, Manuel Souto, Guillermo Mínguez Espallargas|2019|Chem.-Eur.J.|25|12636|doi:10.1002/chem.201902855

Space GroupCrystallographyCrystal Systemcatena-[bis(mu-44'-{2-[45-bis(4-carboxylatophenyl)-2H-13-dithiol-2-ylidene]-2H-13-dithiole-45-diyl}dibenzoato)-(mu-acetato)-aqua-tri-erbium unknown solvate hydrate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2106823: Experimental Crystal Structure Determination

2021

Related Article: Bele��n Lerma-Berlanga, Javier Castells-Gil, Carolina R. Ganivet, Neyvis Almora-Barrios, Javier Gonza��lez-Platas, Oscar Fabelo, Natalia M. Padial, Carlos Marti��-Gastaldo|2021|J.Am.Chem.Soc.|143|21195|doi:10.1021/jacs.1c09278

Space GroupCrystallographyCrystal Systemoctakis(mu-[14-phenylenebis(carbonylazanediyl)]bis(oxido))-tetrakis(mu-N1N4-dioxidobenzene-14-dicarboximidato)-octa-titanium(iv) NN-dimethylformamide solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2010362: Experimental Crystal Structure Determination

2020

Related Article: Lucía Piñeiro-López, Francisco-Javier Valverde-Muñoz, Elzbieta Trzop, M. Carmen Muñoz, Maksym Seredyuk, Javier Castells-Gil, Iván da Silva, Carlos Martí-Gastaldo, Eric Collet, José Antonio Real|2021|Chemical Science|12|1317|doi:10.1039/D0SC04420B

catena-(octakis(mu-cyano)-bis(mu-38-phenanthroline)-tetra-gold-di-iron nitrobenzene solvate)Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2010366: Experimental Crystal Structure Determination

2020

Related Article: Lucía Piñeiro-López, Francisco-Javier Valverde-Muñoz, Elzbieta Trzop, M. Carmen Muñoz, Maksym Seredyuk, Javier Castells-Gil, Iván da Silva, Carlos Martí-Gastaldo, Eric Collet, José Antonio Real|2021|Chemical Science|12|1317|doi:10.1039/D0SC04420B

Space GroupCrystallographyCrystal Systemcatena-(tetrakis(mu-cyano)-(mu-38-phenanthroline)-di-gold-iron nitrobenzene solvate)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2018382: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[tetrakis(mu-cyano)-bis(pyrimidin-5-amine)-platinum(ii)-iron(ii)]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2018383: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[octakis(mu-cyano)-tetrakis(5-aminopyrimidine)-di-iron(ii)-di-platinum(ii) hydrate]Experimental 3D Coordinates
researchProduct

CCDC 2018387: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographycatena-[octakis(mu-cyano)-tetrakis(5-aminopyrimidine)-di-iron(ii)-di-platinum(ii) ethanol solvate]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2010364: Experimental Crystal Structure Determination

2020

Related Article: Lucía Piñeiro-López, Francisco-Javier Valverde-Muñoz, Elzbieta Trzop, M. Carmen Muñoz, Maksym Seredyuk, Javier Castells-Gil, Iván da Silva, Carlos Martí-Gastaldo, Eric Collet, José Antonio Real|2021|Chemical Science|12|1317|doi:10.1039/D0SC04420B

Space GroupCrystallographyCrystal Systemcatena-(tetrakis(mu-cyano)-(mu-38-phenanthroline)-di-gold-iron nitrobenzene solvate)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2018385: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[octakis(mu-cyano)-tetrakis(5-aminopyrimidine)-di-iron(ii)-di-platinum(ii) hydrate]Experimental 3D Coordinates
researchProduct

CCDC 1871195: Experimental Crystal Structure Determination

2019

Related Article: Javier Castells-Gil, Natalia M. Padial, Neyvis Almora-Barrios, Ivan da Silva, Diego Mateo, Josep Albero, Hermenegildo García, Carlos Martí-Gastaldo|2019|Chemical Science|10|4313|doi:10.1039/C8SC05218B

Space GroupCrystallographycatena-[tetratriacontakis(mu-benzene-135-tricarboxylato)-heptadecakis(mu-oxo)-octa-aqua-octadeca-hydroxo-pentacosa-oxo-henipentaconta-titanium(iv) ethanol solvate]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2018393: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographyCrystal Systemcatena-[octakis(mu-cyano)-tetrakis(5-aminopyrimidine)-di-iron(ii)-di-palladium(ii) methanol solvate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2018378: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[tetrakis(mu-cyano)-bis(pyrimidin-5-amine)-palladium(ii)-iron(ii)]Cell ParametersExperimental 3D Coordinates
researchProduct