A Polyphenylene Dendrimer Drug Transporter with Precisely Positioned Amphiphilic Surface Patches
The design and synthesis of a polyphenylene dendrimer (PPD 3) with discrete binding sites for lipophilic guest molecules and characteristic surface patterns is presented. Its semi-rigidity in combination with a precise positioning of hydrophilic and hydrophobic groups at the periphery yields a refined architecture with lipophilic binding pockets that accommodate defined numbers of biologically relevant guest molecules such as fatty acids or the drug doxorubicin. The size, architecture, and surface textures allow to even penetrate brain endothelial cells that are a major component of the extremely tight blood-brain barrier. In addition, low to no toxicity is observed in in vivo studies using…
Amphiphilic Polyphenylene Dendron Conjugates for Surface Remodeling of Adenovirus 5
Abstract Amphiphilic surface groups play an important role in many biological processes. The synthesis of amphiphilic polyphenylene dendrimer branches (dendrons), providing alternating hydrophilic and lipophilic surface groups and one reactive ethynyl group at the core is reported. The amphiphilic surface groups serve as biorecognition units that bind to the surface of adenovirus 5 (Ad5), which is a common vector in gene therapy. The Ad5/dendron complexes showed high gene transduction efficiencies in coxsackie‐adenovirus receptor (CAR)‐negative cells. Moreover, the dendrons offer incorporation of new functions at the dendron core by in situ post‐modifications, even when bound to the Ad5 sur…
Polymer Complexes in Biological Applications
This chapter summarizes the influence of polyelectrolyte topology on biological functions and biomedical applications such as cell uptake, drug delivery, and gene transfection. Polyelectrolytes utilized are spherical structures derived from dendrimers and albumin or cylindrical brushes, all of which are decorated with various polypeptide chains.
Unraveling In vivo brain transport of protein‐coated fluorescent nanodiamonds
The blood–brain barrier is the biggest hurdle to overcome for the treatment of neurological disorders. Here, protein‐coated nanodiamonds are delivered to the brain and taken up by neurovascular unit cells after intravenous injection. Thus, for the first time, nanodiamonds with their unique properties and a flexible protein coating for the attachment of therapeutics emerge as a potential platform for nanotheranostics of neurological disorders.Nanotheranostics, combining diagnostics and therapy, has the potential to revolutionize treatment of neurological disorders. But one of the major obstacles for treating central nervous system diseases is the blood–brain barrier (BBB) preventing systemic…