0000000000018309
AUTHOR
Fathollah Varnik
Molecular Dynamics Simulations
A tutorial introduction to the technique of Molecular Dynamics (MD) is given, and some characteristic examples of applications are described. The purpose and scope of these simulations and the relation to other simulation methods is discussed, and the basic MD algorithms are described. The sampling of intensive variables (temperature T, pressure p) in runs carried out in the microcanonical (NVE) ensemble (N= particle number, V = volume, E = energy) is discussed, as well as the realization of other ensembles (e.g. the NVT ensemble). For a typical application example, molten SiO2, the estimation of various transport coefficients (self-diffusion constants, viscosity, thermal conductivity) is d…
Atomistic Simulation of Transport Phenomena in Simple and Complex Fluids and Fluid Mixtures
Computer simulations of fluids in thermal equilibrium can yield information on transport coefficients such as self—diffusion and interdiffusion coefficients, viscosity, and thermal conductivity. While the estimation of self—diffusion coefficients from the mean square displacements of the respective particles is rather straightforward, the estimation of other transport coefficients is less straightforward, and can be based on either an analysis of time correlation functions of the appropriate collective variables, or on nonequilibrium techniques where the linear response to appropriate perturbations is measured.
Reduction of the glass transition temperature in polymer films: A molecular-dynamics study
We present results of molecular dynamics (MD) simulations for a non-entangled polymer melt confined between two completely smooth and repulsive walls, interacting with inner particles via the potential $U_{\rm wall}\myeq (\sigma/z)^9$, where $z \myeq |z_{\rm particle}-z_{\rm wall}|$ and $\sigma$ is (roughly) the monomer diameter. The influence of this confinement on the dynamic behavior of the melt is studied for various film thicknesses (wall-to-wall separations) $D$, ranging from about 3 to about 14 times the bulk radius of gyration. A comparison of the mean-square displacements in the film and in the bulk shows an acceleration of the dynamics due to the presence of the walls. %Consistent…
GLASS TRANSITION IN THIN POLYMER FILMS: A MOLECULAR DYNAMICS STUDY
A melt of nonentangled polymer chains confined between two smooth and purely repulsive walls is studied for various film thicknesses D and temperatures. The dynamics of the supercooled films is qualitatively identical to that of the bulk, but the walls lead to faster relaxation. To quantify this observation we analyze the data by the mode-coupling theory (MCT) of the glass transition. We find that the critical temperature of MCT, Tc(D), decreases with D and that T - Tc(D) is a relevant temperature scale. The static structure factor and dynamic correlation functions at intermediate times coincide with bulk behavior when compared to the same T - Tc(D).
Static and dynamic properties of supercooled thin polymer films
The dynamic and static properties of a supercooled (non-entangled) polymer melt are investigated via molecular-dynamics (MD) simulations. The system is confined between two completely smooth and purely repulsive walls. The wall-to-wall separation (film thickness), D, is varied from about 3 to about 14 times the bulk radius of gyration. Despite the geometric confinement, the supercooled films exhibit many qualitative features which were also observed in the bulk and could be analyzed in terms of mode-coupling theory (MCT). Examples are the two-step relaxation of the incoherent intermediate scattering function, the time-temperature superposition property of the late time alpha-process and the…
Multiscale modeling of polymers at interfaces
A brief review of modeling and simulation methods for a study of polymers at interfaces is provided. When studying truly multiscale problems as provided by realistic polymer systems, coarse graining is practically unavoidable. In this process, degrees of freedom on smaller scales are eliminated to the favor of a model suitable for efficient study of the system behavior on larger length and time scales. We emphasize the need to distinguish between dynamic and static properties regarding the model validation. A model which accurately reproduces static properties may fail completely, when it comes to the dynamic behavior of the system. Furthermore, we comment on the use of Monte Carlo method i…
Glassy dynamics in thin polymer films: recent MD results
The influence of a film geometry on the glass transition is investigated via molecular dynamics (MD) simulations of a (non-entangled) polymer melt. The confinement is realized by two identical potential barriers of the form U wall = z -9 , where z denotes the distance of a particle from the wall. Despite the geometric confinement, basic qualitative features of the system dynamics can be well described in the framework of the mode-coupling theory (MCT). Examples are the two-step relaxation of the incoherent intermediate scattering function, the time-temperature superposition property of the late time α-process and the space-time factorization of the scattering function on the intermediate ti…
Molecular dynamics of supercooled polymer films
We present results of molecular dynamics simulations for a supercooled polymer melt confined between two smooth and purely repulsive walls. The thickness D of the film is about 7 times the bulk radius of gyration. For all temperatures studied, a significant increase of the monomer and chain mobilities with respect to the bulk is observed. Preliminary results suggest that structural relaxation times exhibit a power-law behavior in the vicinity of a critical temperature T c (D) 0.39 (in Lennard-Jones units). This estimate of T c (D) is about 14% smaller than the corresponding bulk value. Despite this significant decrease the time dependence of various mean-square displacements seems to be una…