6533b7dbfe1ef96bd1270191
RESEARCH PRODUCT
Molecular Dynamics Simulations
Fathollah VarnikWolfgang PaulJürgen HorbachWalter KobKurt Bindersubject
Materials scienceParticle numberSampling (statistics)FOS: Physical sciencesDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksCondensed Matter PhysicsShear (sheet metal)ViscosityMolecular dynamicsThermal conductivityVolume (thermodynamics)General Materials ScienceStatistical physicsRealization (systems)description
A tutorial introduction to the technique of Molecular Dynamics (MD) is given, and some characteristic examples of applications are described. The purpose and scope of these simulations and the relation to other simulation methods is discussed, and the basic MD algorithms are described. The sampling of intensive variables (temperature T, pressure p) in runs carried out in the microcanonical (NVE) ensemble (N= particle number, V = volume, E = energy) is discussed, as well as the realization of other ensembles (e.g. the NVT ensemble). For a typical application example, molten SiO2, the estimation of various transport coefficients (self-diffusion constants, viscosity, thermal conductivity) is discussed. As an example of Non-Equilibrium Molecular Dynamics (NEMD), a study of a glass-forming polymer melt under shear is mentioned.
year | journal | country | edition | language |
---|---|---|---|---|
2003-08-07 |