0000000000018551
AUTHOR
Marcos Garcia
Cover Picture: Complexation and Extraction of PAHs to the Aqueous Phase with a Dinuclear Pt II Diazapyrenium‐Based Metallacycle (Chem. Eur. J. 41/2010)
Subcellular duplex DNA and G‐quadruplex interaction profiling of a hexagonal PtII metallacycle
[Abstract] Metal‐driven self‐assembly afforded a multitude of fascinating supramolecular coordination complexes (SCCs) with applications as catalysts, host–guest, and stimuli‐responsive systems. However, the interest in the biological applications of SCCs is only starting to emerge and thorough characterization of their behavior in biological milieus is still lacking. Herein, we report on the synthesis and detailed in‐cell tracking of a Pt2L2 metallacycle. We show that our hexagonal supramolecule accumulates in cancer cell nuclei, exerting a distinctive blue fluorescence staining of chromatin resistant to UV photobleaching selectively in nucleolar G4‐rich regions. SCC co‐localizes with epit…
Complexation and Extraction of PAHs to the Aqueous Phase with a Dinuclear Pt II Diazapyrenium‐Based Metallacycle
New palladium and platinum metallacycles have been synthesized by reaction between a 2,7-diazapyrenium-based ligand and Pd(II) and Pt(II) complexes. The inclusion complexes between the metallacycles and polycyclic aromatic hydrocarbons (PAHs) in CD(3)NO(2) and D(2)O were studied by NMR spectroscopy. The structures of the inclusion complexes of the Pt metallacycle as host with pyrene, phenanthrene, and triphenylene were confirmed by single crystal X-ray crystallography. The association constants between the Pt metallacycle and the selected PAHs were determined in CH(3)CN following the characteristic charge-transfer band displayed in their UV/Vis absorption spectrum. Although in aqueous solut…
Spontaneous Self-Assembly of a 1,8-Naphthyridine into Diverse Crystalline 1D Nanostructures: Implications on the Stimuli-Responsive Luminescent Behaviour
The previously reported organic solid-state fluorophore 7-(3,4-dimethoxyphenyl)-2-ethoxy-4-phenyl-1,8-naphthyridine-3-carbonitrile 1 was found to spontaneously self-organize into diverse 1D crystalline nanostructures by choosing appropriate liquid phase self-assembly conditions. Experimental results, as well as DFT quantum calculations (at the M06-2X/6-31+G(d) level), shed light on the aggregation mechanism. This was found in good agreement with molecules being primarily joined together through intermolecular alignment caused by electrostatic interactions, as well as minimization of the steric repulsions. This alignment provokes the preferential growth of the crystalline materials into 1D a…
[2]Catenanes and inclusion complexes derived from self-assembled rectangular PdII and PtII metallocycles
New inclusion complexes and [2]catenanes were self-assembled from a fluorescent diazapyrenium based ligand, a PdII or PtII complex, and cyclic or acyclic electron rich aromatic guests in aqueous and organic media. The molecular rectangles display a π-deficient cavity suitable to incorporate π-donor aromatic systems. The inclusion complexes between the metallocycles and phenylenic (2a,b) and naphthalenic (3a,b–5a,b) derivatives were studied by NMR, UV-vis and fluorescence spectroscopy. The crystal structure of (3b) ⊂ 1a·6PF(6) confirmed the insertion of the guest into the cavity of the metallocycle. Following the same self-assembly strategy, the use of polyethers 6,7 as π-donors resulted in …
Self-assembled Pt2L2 boxes strongly bind G-quadruplex DNA and influence gene expression in cancer cells
Supramolecular Pt(ii) quadrangular boxes bind native and G-quadruplex DNA motifs in a size-dependent fashion. Three Pt molecular squares of distinct size show biological activity against cancer cells and heavily influence the expression of genes known to form G-quadruplexes in their promoter regions. The smallest Pt-box displays less activity but more selectivity for a quadruplex formed in the c-Kit gene.
Polymorphism-Triggered Reversible Thermochromic Fluorescence of a simple 1,8-Naphthyridine
The fluorescent behavior in the solid state of a naphthyridine-based donor–acceptor heterocycle is presented. Synthesized as a crystalline blue-emissive solid (Pbca), the compound can easily be transformed in its P21/c polymorphic form by heating. The latter material shows blue to cyan emission switching triggered by a reversible thermally induced phase transformation. This fact, the reversible acidochromism, and the strong anisotropic fluorescence of the compound in the solid state, account for the potential of 1,8-naphthyridines as simple and highly tunable organic compounds in materials science.