0000000000019957

AUTHOR

Christina S. Birkel

Solution synthesis of nanoparticular binary transition metal antimonides

The preparation of nanoengineered materials with controlled nanostructures, for example, with an anisotropic phase segregated structure or a regular periodicity rather than with a broad range of interparticle distances, has remained a synthetic challenge for intermetallics. Artificially structured materials, including multilayers, amorphous alloys, quasicrystals, metastable crystalline alloys, or granular metals, are mostly prepared using physical gas phase procedures. We report a novel, powerful solution-mediated approach for the formation of nanoparticular binary antimonides based on presynthesized antimony nanoparticles. The transition metal antimonides M-Sb (M = Co, Ni, Cu(2), Zn) were …

research product

Enhanced Debye level in nano Zn1+xSb, FeSb2, and NiSb: Nuclear inelastic spectroscopy on121Sb (Phys. Status Solidi B 5/2014)

research product

Enhanced Debye level in nano Zn1+xSb, FeSb2, and NiSb: Nuclear inelastic spectroscopy on121Sb

The121 Sb partial density of phonon states (DPS) in nanopowder antimonides were obtained with nuclear inelastic scattering on , , and NiSb prepared by a wet chemistry route. The DPS is compared with the bulk counterpart. An increase of the Debye level indicative of a decrease of the isothermal speed of sound is systematically observed. This observation reveals that the decrease in speed of sound observed in nanostructured thermoelectric materials is not restricted to sintered nanocomposites.

research product

SPS-assisted preparation of the Magnéli phase WO2.90 for thermoelectric applications

We describe the preparation and simultaneous consolidation of WO2.90 by spark plasma sintering (SPS). SPS allows for the direct manufacturing of large amounts of consolidated material. Synchrotron powder X-ray diffraction indicates that the material is single phase. Microstructure analysis indicates that the pellet is fully dense, allowing high-temperature thermoelectric properties to be reliably measured. The as-prepared samples of WO2.90 reach a ZT of 0.1 at 1100 K.

research product

Solution Synthesis of a New Thermoelectric Zn1-xSb Nanophase and Its Structure Determination Using Automated Electron Diffraction Tomography

Engineering materials with specific physical properties have recently focused on the effect of nanoscopic inhomogeneities at the 10 nm scale. Such features are expected to scatter medium- and long-wavelength phonons thereby lowering the thermal conductivity of the system. Low thermal conductivity is a prerequisite for effective thermoelectric materials, and the challenge is to limit the transport of heat by phonons, without simultaneously decreasing charge transport. A solution-phase technique was devised for synthesis of thermoelectric "Zn(4)Sb(3)" nanocrystals as a precursor for phase segregation into ZnSb and a new Zn-Sb intermetallic phase, Zn(1+delta)Sb, in a peritectoid reaction. Our …

research product

Spectroscopic Signature of the Superparamagnetic Transition and Surface Spin Disorder in CoFe2O4 Nanoparticles

Phonons are exquisitely sensitive to finite length scale effects in a wide variety of materials. To investigate confinement in combination with strong magnetoelastic interactions, we measured the infrared vibrational properties of CoFe(2)O(4) nanoparticles and compared our results to trends in the coercivity over the same size range and to the response of the bulk material. Remarkably, the spectroscopic response is sensitive to the size-induced crossover to the superparamagnetic state, which occurs between 7 and 10 nm. A spin-phonon coupling analysis supports the core-shell model. Moreover, it provides an estimate of the magnetically disordered shell thickness, which increases from 0.4 nm i…

research product

Wet Chemical Synthesis and a Combined X-ray and Mössbauer Study of the Formation of FeSb2 Nanoparticles

Understanding how solids form is a challenging task, and few strategies allow for elucidation of reaction pathways that are useful for designing the synthesis of solids. Here, we report a powerful solution-mediated approach for formation of nanocrystals of the thermoelectrically promising FeSb(2) that uses activated metal nanoparticles as precursors. The small particle size of the reactants ensures minimum diffusion paths, low activation barriers, and low reaction temperatures, thereby eliminating solid-solid diffusion as the rate-limiting step in conventional bulk-scale solid-state synthesis. A time- and temperature-dependent study of formation of nanoparticular FeSb(2) by X-ray powder dif…

research product

ChemInform Abstract: Solution Synthesis of Nanoparticular Binary Transition Metal Antimonides.

The transition metal antimonides MSb with M: Co, Ni, and Zn and Cu2Sb with particle sizes ranging from 20 to 60 nm are prepared using presynthesized antimony nanoparticles and activated metal nanoparticles as precursors.

research product

Rapid Microwave Preparation of Thermoelectric TiNiSn and TiCoSb Half-Heusler Compounds

The 18-electron ternary intermetallic systems TiNiSn and TiCoSb are promising for applications as high-temperature thermoelectrics and comprise earth-abundant, and relatively nontoxic elements. Heusler and half-Heusler compounds are usually prepared by conventional solid state methods involving arc-melting and annealing at high temperatures for an extended period of time. Here, we report an energy-saving preparation route using a domestic microwave oven, reducing the reaction time significantly from more than a week to one minute. A microwave susceptor material rapidly heats the elemental starting materials inside an evacuated quartz tube resulting in near single phase compounds. The initia…

research product

ChemInform Abstract: Solution Synthesis of a New Thermoelectric Zn1+xSb Nanophase and Its Structure Determination Using Automated Electron Diffraction Tomography.

Thermoelectric nanoparticles of the nominal composition Zn4Sb3 are prepared by heating Sb nanoparticles with a 9-fold excess of Zn particles (synthesized by reaction of SbCl3 or ZnCl2 with Li[Et3BH] in THF at room temperature, and about 65 °C, respectively) in trioctylamine at about 300 °C for 225 min.

research product

Thermoelectric properties of spark-plasma sintered nanoparticular FeSb2prepared via a solution chemistry approach

Nanoparticular FeSb2 was prepared in solution from cyclopentadienyl iron(ii) dicarbonyl dimer [Fe(Cp(CO)2)]2 and antimony nanoparticles. Spark plasma sintering was used as consolidation method to maintain the particle size. The thermoelectric performance of FeSb2 is limited by its high thermal conductivity. In this work, the thermal conductivity was suppressed by nearly 80% compared to the bulk value by introducing grain boundary scattering of phonons on the nanoscale. The thermoelectric properties of the consolidated FeSb2 emphasize the possibility of altering thermal transport of promising thermoelectric compounds by phonon scattering by engineering the interfaces at the nanoscale.

research product

Using crystallographic shear to reduce lattice thermal conductivity: high temperature thermoelectric characterization of the spark plasma sintered Magnéli phases WO2.90 and WO2.722.

Engineering of nanoscale structures is a requisite for controlling the electrical and thermal transport in solids, in particular for thermoelectric applications that require a conflicting combination of low thermal conductivity and low electrical resistivity. We report the thermoelectric properties of spark plasma sintered Magnéli phases WO2.90 and WO2.722. The crystallographic shear planes, which are a typical feature of the crystal structures of Magnéli-type metal oxides, lead to a remarkably low thermal conductivity for WO2.90. The figures of merit (ZT = 0.13 at 1100 K for WO2.90 and 0.07 at 1100 K for WO2.722) are relatively high for tungsten-oxygen compounds and metal oxides in general…

research product

Enhanced thermoelectric properties of the n-type Magnéli phase WO2.90: reduced thermal conductivity through microstructure engineering

The thermoelectric properties of the Magneli phase WO2.90 were investigated, with special attention to how the thermoelectric performance can be altered by changing its microstructure. Spark plasma sintering (SPS) allowed the direct preparation of large amounts of consolidated material. Adding Ta2O5 to the reaction mixture lead to the formation of solid solutions W1−xTaxO2.90via a concurrent reaction between WO3 and Ta2O5 during the SPS treatment. In addition, micron-sized inclusions containing tungsten surrounded by WOx embedded in a WO2.90 matrix were formed, which act as additional scattering centers. As a result, the thermal conductivity of the Ta-containing samples was reduced by ≈30% …

research product

Properties of spark plasma sintered nanostructured Zn1+xSb

Engineering materials with specific physical properties has recently focused on the effect of nanoscopic inhomogeneities at the 10 nm scale. Such features are expected to scatter medium and long-wavelength phonons lowering thereby the thermal conductivity of the system without simultaneously decreasing the charge transport (phonon–glass electron–crystal concept). A new Zn1+xSb nanophase obtained by a wet chemical approach was densified by spark plasma sintering (SPS). Investigations on compounds subsumed as “Zn4Sb3” always suffer from its low thermal stability and the contamination of the nanoparticles with solvents and additives used in the synthesis. In order to gain insight into this com…

research product