0000000000019959

AUTHOR

Ilya Sergueev

showing 4 related works from this author

Enhanced Debye level in nano Zn1+xSb, FeSb2, and NiSb: Nuclear inelastic spectroscopy on121Sb (Phys. Status Solidi B 5/2014)

2014

symbols.namesakeCondensed matter physicsChemistryNano-symbolsCondensed Matter PhysicsSpectroscopyElectronic Optical and Magnetic MaterialsDebyephysica status solidi (b)
researchProduct

Enhanced Debye level in nano Zn1+xSb, FeSb2, and NiSb: Nuclear inelastic spectroscopy on121Sb

2014

The121 Sb partial density of phonon states (DPS) in nanopowder antimonides were obtained with nuclear inelastic scattering on , , and NiSb prepared by a wet chemistry route. The DPS is compared with the bulk counterpart. An increase of the Debye level indicative of a decrease of the isothermal speed of sound is systematically observed. This observation reveals that the decrease in speed of sound observed in nanostructured thermoelectric materials is not restricted to sintered nanocomposites.

Materials scienceCondensed matter physicsPhononInelastic scatteringCondensed Matter PhysicsThermoelectric materialsElectronic Optical and Magnetic Materialssymbols.namesakeSpeed of soundNano-symbolsSpectroscopyWet chemistryDebyephysica status solidi (b)
researchProduct

Tin-DNA complexes investigated by nuclear inelastic scattering of synchrotron radiation

2005

Nuclear inelastic scattering (NIS) of synchrotron radiation has been used to investigate the dynamics of tin ions chelated by DNA. Theoretical NIS spectra have been simulated with the help of density functional theory (DFT) calculations using 12 models for different binding sites of the tin ion in (CH3)Sn(DNAPhosphate)2. The simulated spectra are compared with the measured spectrum of the tin-DNA complex.

Chemical Physics (physics.chem-ph)Nuclear and High Energy PhysicsMaterials sciencenuclear inelastic scattering tin–DNASynchrotron radiationchemistry.chemical_elementFOS: Physical sciencesInelastic scatteringCondensed Matter PhysicsMolecular physicsAtomic and Molecular Physics and OpticsSpectral lineIonchemistry.chemical_compoundCondensed Matter::Materials SciencechemistrySettore CHIM/03 - Chimica Generale E InorganicaPhysics - Chemical PhysicsPhysics::Accelerator PhysicsDensity functional theoryPhysical and Theoretical ChemistryTinNuclear ExperimentDNASettore CHIM/02 - Chimica Fisica
researchProduct

Dynamics of Metal Centers Monitored by Nuclear Inelastic Scattering

2005

Nuclear inelastic scattering of synchrotron radiation has been used now since 10 years as a tool for vibrational spectroscopy. This method has turned out especially useful in case of large molecules that contain a M\"ossbauer active metal center. Recent applications to iron-sulfur proteins, to iron(II) spin crossover complexes and to tin-DNA complexes are discussed. Special emphasis is given to the combination of nuclear inelastic scattering and density functional calculations.

iron-sulfur proteinspin crossover complexeChemical Physics (physics.chem-ph)Nuclear and High Energy PhysicsMaterials scienceFOS: Physical sciencesSynchrotron radiationInfrared spectroscopyInelastic scatteringCondensed Matter Physicsvibrational spectroscopyAtomic and Molecular Physics and Opticsnuclear inelastic scatteringMetalSettore CHIM/03 - Chimica Generale E InorganicaSpin crossovervisual_artPhysics - Chemical PhysicsMössbauer spectroscopyvisual_art.visual_art_mediumMoleculedensity functional theory calculationsPhysical and Theoretical ChemistryAtomic physicsSettore CHIM/02 - Chimica Fisica
researchProduct