0000000000020311
AUTHOR
R. V. F. Janssens
Superdeformation in the Doubly Magic NucleusC2040a20
A rotational band with seven gamma -ray transitions between states with spin 2 (h) over bar and 16 (h) over bar has been observed in the doubly magic, self-conjugate nucleus Ca-40(20)20. The measured transition quadrupole moment of 1.80(-0.29)(+0.39)eb indicates a superdeformed shape with a deformation beta (2) = 0.59(-0.07)(+0.11). The features of this band are explained by cranked relativistic mean field calculations to arise from an 8-particle 8-hole excitation.
Proton-hole states in theN=30neutron-rich isotopeK49
Excited states in the N=30 neutron-rich isotope {sup 49}K have been studied using multinucleon transfer reactions with thin targets and the PRISMA-CLARA spectrometer combined with thick-target {gamma}-coincidence data from Gammasphere. The d{sub 3/2} proton-hole state is located 92 keV above the s{sub 1/2} ground state, and the proton-particle f{sub 7/2} state is suggested at 2104 keV. Three other levels are established as involving the coupling to 2{sup +} of two neutrons above the N=28 shell. The measured or estimated lifetimes served to reinforce the interpretation of the observed level structure, which is found to be in satisfactory agreement with shell-model calculations.
Reevaluation of theP30(p,γ)S31astrophysical reaction rate from a study of theT=1/2mirror nuclei,S31andP31
The $^{30}\mathrm{P}$($p,\ensuremath{\gamma}$)$^{31}\mathrm{S}$ reaction rate is expected to be the principal determinant for the endpoint of nucleosynthesis in classical novae. To date, the reaction rate has only been estimated through Hauser-Feschbach calculations and is unmeasured experimentally. This paper aims to remedy this situation. Excited states in $^{31}\mathrm{S}$ and $^{31}\mathrm{P}$ were populated in the $^{12}\mathrm{C}$($^{20}\mathrm{Ne}$,$n$) and $^{12}\mathrm{C}$($^{20}\mathrm{Ne}$,$p$) reactions, respectively, at a beam energy of 32 MeV, and their resulting $\ensuremath{\gamma}$decay was detected with the Gammasphere array. Around half the relevant proton unbound states …
Nuclear Shape Transitions and Some Properties of Aligned-Particle Configurations at High Spin
Two topics are addressed in this paper. First, we discuss the variation of shapes with spin and neutron number for nuclei in the N approx. = 88 transitional region. Second, we present comments on the feeding times of very high spin single-particle yrast states.
Entry distribution of 220Th: A method to determine the fission barrier of an unstable nucleus
Evolution of collective motion in light polonium nuclei
The {gamma}-ray spectroscopy of even- and odd-mass isotopes of polonium have been studied using arrays of Ge detectors coupled to recoil-mass analyzers, including recoil-decay tagging techniques. The level energies and B(E2) branching ratios can be reproduced by theoretical frameworks which do not explicitly include proton particle-hole excitations across the Z = 82 shell, conclusions in contrast to those deduced from alpha-decay measurements.
Superallowed α Decay to Doubly Magic Sn100
We report the first observation of the ^{108}Xe→^{104}Te→^{100}Sn α-decay chain. The α emitters, ^{108}Xe [E_{α}=4.4(2) MeV, T_{1/2}=58_{-23}^{+106} μs] and ^{104}Te [E_{α}=4.9(2) MeV, T_{1/2}<18 ns], decaying into doubly magic ^{100}Sn were produced using a fusion-evaporation reaction ^{54}Fe(^{58}Ni,4n)^{108}Xe, and identified with a recoil mass separator and an implantation-decay correlation technique. This is the first time α radioactivity has been observed to a heavy self-conjugate nucleus. A previous benchmark for study of this fundamental decay mode has been the decay of ^{212}Po into doubly magic ^{208}Pb. Enhanced proton-neutron interactions in the N=Z parent nuclei may result …
Search for a 2-quasiparticle high-Kisomer inRf256
The energies of 2-quasiparticle (2-qp) states in heavy shell-stabilized nuclei provide information on the single-particle states that are responsible for the stability of superheavy nuclei. We have calculated the energies of 2-qp states in {sup 256}Rf, which suggest that a long-lived, low-energy 8{sup -} isomer should exist. A search was conducted for this isomer through a calorimetric conversion electron signal, sandwiched in time between implantation of a {sup 256}Rf nucleus and its fission decay, all within the same pixel of a double-sided Si strip detector. A 17(5)-{mu}s isomer was identified. However, its low population, {approx}5(2)% that of the ground state instead of the expected {a…
Fission Barrier of Superheavy Nuclei and Persistence of Shell Effects at High Spin: Cases ofNo254andTh220
We report on the first measurement of the fission barrier height in a heavy shell-stabilized nucleus. The fission barrier height of No-254 is measured to be B-f = 6.0 +/- 0.5 MeV at spin 15 (h) over bar and, by extrapolation, B-f = 6.6 +/- 0.9 MeV at spin 0 (h) over bar. This information is deduced from the measured distribution of entry points in the excitation energy versus spin plane. The same measurement is performed for Th-220 and only a lower limit of the fission barrier height can be determined: B-f (I) > 8 MeV. Comparisons with theoretical fission barriers test theories that predict properties of superheavy elements.
Exploring the stability of super heavy elements: First Measurement of the Fission Barrier of $^{254} $No
The gamma-ray multiplicity and total energy emitted by the heavy nucleus 254No have been measured at 2 different beam energies. From these measurements, the initial distributions of spin I and excitation energy E * of 254No were constructed. The distributions display a saturation in excitation energy, which allows a direct determination of the fission barrier. 254No is the heaviest shell-stabilized nucleus with a measured fission barrier. © Owned by the authors, published by EDP Sciences, 2014.
Response of BGO detectors to photons of 3–50 MeV energy
Abstract The response of an array of 7 hexagonal BGO detectors each 7.5 cm long (6.7 radiation lengths) with 3.6 cm side-to-side distance was measured using monochromatic photons from the tagged-photon facility at the electron accelerator MAMI A at Mainz. The experimental spectra of the deposited energy for a single detector and for the array of seven modules compare very well with the predictions of Monte Carlo shower simulations using the code GEANT3. Significant improvement of the energy resolution is observed for the summed energy spectra compared to the resolution of a single module. This improvement deteriorates at higher photon energies because the length of the detector is not suffi…
Kπ=8−isomers andKπ=2−octupole vibrations inN=150shell-stabilized isotones
Isomers have been populated in {sup 246}Cm and {sup 252}No with quantum numbers K{sup {pi}}=8{sup -}, which decay through K{sup {pi}}=2{sup -} rotational bands built on octupole vibrational states. For N=150 isotones with (even) atomic number Z=94-102, the K{sup {pi}}=8{sup -} and 2{sup -} states have remarkably stable energies, indicating neutron excitations. An exception is a singular minimum in the 2{sup -} energy at Z=98, due to the additional role of proton configurations. The nearly constant energies, in isotones spanning an 18% increase in Coulomb energy near the Coulomb limit, provide a test for theory. The two-quasiparticle K{sup {pi}}=8{sup -} energies are described with single-pa…
Identification of excited states in119Ba
Excited states have been identified in the very neutron-deficient ${}^{119}\mathrm{Ba}$ nucleus. Two bands have been observed, which are likely to be based on ${h}_{11/2}$ and ${(g}_{7/2}{d}_{5/2})$ neutron orbitals. Despite this being the first observation of excited states in ${}^{119}\mathrm{Ba},$ the bands extend to $(75/2)\ensuremath{\Elzxh}$ and $(79/2)\ensuremath{\Elzxh},$ respectively. The bands have been assigned to ${}^{119}\mathrm{Ba}$ using gamma-recoil and gamma--x-ray coincidences. Several quasiparticle alignments have been identified, involving neutron ${(h}_{11/2}{)}^{2}$ and proton ${(h}_{11/2}{)}^{2}$ aligned configurations. Furthermore, the bands show features which are r…
Identification of yrast states in187Pb
gamma-ray spectroscopy of the high-spin states of the neutron-deficient nucleus Pb-187 has been conducted with the Gd-155(Ar-36,4n) reaction. A cascade of three transitions was deduced from gamma-gamma coincidence data gated by detection of recoiling evaporation residues in a gas-filled recoil separator. In an earlier, separate experiment, two of these gamma rays were positively identified with Pb-187 by recoil-gamma coincidence measurements with a high-resolution, recoil mass spectrometer. From comparison with similar sequences in heavier odd-A lead isotopes, the cascade in Pb-187 is associated with the sequence of three E2 transitions from the yrast 25/2(+) level to a low-lying 13/2(+) is…
Mirror energy differences in theA=31mirror nuclei,S31andP31, and their significance in electromagnetic spin-orbit splitting
Excited states in $^{31}\mathrm{S}$ and $^{31}\mathrm{P}$ were populated in the $^{12}\mathrm{C}$($^{20}\mathrm{Ne}$,n) and $^{12}\mathrm{C}$($^{20}\mathrm{Ne}$,p) reactions, respectively, at a beam energy of 32 MeV. High spin states of positive and negative parity have been observed in $^{31}\mathrm{S}$ for the first time, and the yrast scheme of $^{31}\mathrm{P}$ has been extended. Large mirror energy differences between the first $9/{2}^{\ensuremath{-}}$ and $13/{2}^{\ensuremath{-}}$ states were observed, but only small differences for the first $7/{2}^{\ensuremath{-}}$ and $11/{2}^{\ensuremath{-}}$ levels. The significance of these observations is discussed in relation to the electromag…
Decay of the key 92-keV resonance in the 25Mg(p,γ) reaction to the ground and isomeric states of the cosmic γ-ray emitter 26Al
Abstract The 92-keV resonance in the 25Mg ( p , γ ) 26 Al reaction plays a key role in the production of 26Al at astrophysical burning temperatures of ≈100 MK in the Mg-Al cycle. However, the state can decay to feed either the ground, 26 g Al, or isomeric state, 26 m Al. It is the ground state that is critical as the source of cosmic γ rays. It is therefore important to precisely determine the ground-state branching fraction f 0 of this resonance. Here we report on the identification of four γ-ray transitions from the 92-keV resonance, and determine the spin of the state and its ground-state branching fraction f 0 = 0.52 ( 2 ) s t a t ( 6 ) s y s t . The f 0 value is the most precise report…
International workshop on next generation gamma-ray source
Journal of physics / G 49(1), 010502 (2022). doi:10.1088/1361-6471/ac2827
New constraints on the Al25(p,γ) reaction and its influence on the flux of cosmic γ rays from classical nova explosions
The astrophysical 25Al(p,γ)26Si reaction represents one of the key remaining uncertainties in accurately modeling the abundance of radiogenic 26Al ejected from classical novae. Specifically, the strengths of key proton-unbound resonances in 26Si, that govern the rate of the 25Al(p,γ) reaction under explosive astrophysical conditions, remain unsettled. Here, we present a detailed spectroscopy study of the 26Si mirror nucleus 26Mg. We have measured the lifetime of the 3+, 6.125-MeV state in 26Mg to be 19(3)fs and provide compelling evidence for the existence of a 1− state in the T=1,A=26 system, indicating a previously unaccounted for ℓ=1 resonance in the 25Al(p,γ) reaction. Using the present…
Structure of the Odd-A, Shell-Stabilized NucleusNo102253
In-beam {gamma}-ray spectroscopic measurements have been made on {sub 102}{sup 253}No. A single rotational band was identified up to a probable spin of 39/2({Dirac_h}/2{pi}), which is assigned to the 7/2{sup +}[624] Nilsson configuration. The bandhead energy and the moment of inertia provide discriminating tests of contemporary models of the heaviest nuclei. Novel methods were required to interpret the sparse data set associated with cross sections of around 50 nb. These methods included comparisons of experimental and simulated spectra, as well as testing for evidence of a rotational band in the {gamma}{gamma} matrix.
Proton decay of 108I and its significance for the termination of the astrophysical rp-process
Abstract Employing the Argonne Fragment Mass Analyzer and the implantation-decay-decay correlation technique, a weak 0.50(21)% proton decay branch was identified in 108I for the first time. The 108I proton-decay width is consistent with a hindered l = 2 emission, suggesting a d 5 2 origin. Using the extracted 108I proton-decay Q value of 597(13) keV, and the Q α values of the 108I and 107Te isotopes, a proton-decay Q value of 510(20) keV for 104Sb was deduced. Similarly to the 112,113Cs proton-emitter pair, the Q p ( I 108 ) value is lower than that for the less-exotic neighbor 109I, possibly due to enhanced proton-neutron interactions in N ≈ Z nuclei. In contrast, the present Q p ( Sb 104 …
Shape coexistence in neutron-deficient Hg isotopes studied via lifetime measurements in Hg-184,Hg-186 and two-state mixing calculations
Abstract: The neutron-deficient mercury isotopes, 184 , 186 Hg, were studied with the recoil distance Doppler-shift method using the Gammasphere array and the K ̈ oln plunger device. The differential decay curve method was employed to determine the lifetimes of the yrast states in 184 , 186 Hg. An improvement on previously measured values of yrast states up to 8 + is presented as well as first values for the 9 3 state in 184 Hg and 10 + state in 186 Hg. B ( E 2) values are calculated and compared to a two-state mixing model which utilizes the variable moment of inertia model, allowing for extraction of spin-dependent mixing strengths and amplitudes. peerReviewed
Revised decay properties of the key 93-keV resonance in the 25Mg(p,γ) reaction and its influence on the MgAl cycle in astrophysical environments
The γ-decay properties of an excited state in 26Al at 6398.3(8) keV have been reexamined using the 11B+16O fusion-evaporation reaction. This level represents a key 93.1(8)-keV resonance in the 25Mg+p system and its relative branching to the 26Al ground state, f0, has been determined to be 0.76±0.03 (stat.) ±0.10 (syst.). This is a significantly higher value than the most recent evaluation and implies a considerable increase in the production of cosmic γ rays from 26Al radioactivity. peerReviewed
Shape coexistence in neutron-deficient Hg isotopes studied via lifetime measurements inHg184,186and two-state mixing calculations
The neutron-deficient mercury isotopes, $^{184,186}$Hg, were studied with the Recoil Distance Doppler Shift (RDDS) method using the Gammasphere array and the Koln Plunger device. The Differential Decay Curve Method (DDCM) was employed to determine the lifetimes of the yrast states in $^{184,186}$Hg. An improvement on previously measured values of yrast states up to $8^{+}$ is presented as well as first values for the $9_{3}$ state in $^{184}$Hg and $10^{+}$ state in $^{186}$Hg. $B(E2)$ values are calculated and compared to a two-state mixing model which utilizes the variable moment of inertia (VMI) model, allowing for extraction of spin-dependent mixing strengths and amplitudes.
Stability and synthesis of superheavy elements: Fighting the battle against fission – example of $^{254}$No
International audience; Superheavy nuclei exist solely due to quantum shell effects,which create a pocket in the potential-energy surface of the nucleus, thusproviding a barrier against spontaneous fission. Determining the height ofthe fission barrier and its angular-momentum dependence is important toquantify the role that microscopic shell corrections play in enhancing andextending the limits of nuclear stability. In this talk, the first measurement ofa fission barrier in the very heavy nucleus 254No will be presented.
Prolate yrast cascade in183Tl
The yrast sequence in ${}^{183}\mathrm{Tl}$ has been studied for the first time in recoil-mass selected \ensuremath{\gamma}-ray spectroscopic measurements. A rotational-like cascade of seven transitions is established down to the band head with probable spin and parity ${(13/2}^{+}).$ Unlike in the adjacent odd-mass Tl nuclei, prompt \ensuremath{\gamma} decay from the yrast band to a lower lying weakly deformed (oblate) structure is not observed. These features are consistent with the predicted drop of the prolate band head in ${}^{183}\mathrm{Tl}$ compared to ${}^{185}\mathrm{Tl}.$ The implications for the prolate energy minimum in odd-mass Tl nuclei at the neutron ${i}_{13/2}$ midshell $(…
Competing T = 0 and T = 1 structures in the N = Z nucleus $^{62}_{31}$Ga
Abstract The low-lying levels in the odd-odd N = Z nucleus 62 Ga have been identified for the first time. These data reveal a cascade of stretched-E2 transitions based on a T =0, 1 + bandhead which decays directly to the T =1, 0 + ground state. The observed levels are interpreted in the context of theshell model, using as a basis, the pf 5/2 g 9/2 orbits with a 56 Ni core.
Bridging the nuclear structure gap between stable and super heavy nuclei
International audience; Due to recent advances in detection techniques, excited states in several trans-fermium nuclei were studied in many laboratories worldwide, shedding light on the evolution of nuclear structure between stable nuclei and the predicted island of stability centered around spherical magic numbers. In particular, studies of K-isomers around the Z=100 and N=152 deformed shell closures extended information on the energies of Nilsson orbitals at the Fermi surface. Some of these orbitals originate from spherical states, which are relevant to the magic gaps in super-heavy nuclei. The single-particle energies can be used to test various theoretical predictions and aid in extrapo…
Effect of a Triaxial Nuclear Shape on Proton Tunneling: The Decay and Structure of 145Tm
Gamma rays deexciting states in the proton emitter 145Tm were observed using the recoil-decay tagging method. The 145Tm ground-state rotational band was found to exhibit the properties expected for an h{11/2} proton decoupled band. In addition, coincidences between protons feeding the 2{+} state in 144Er and the 2{+}-->0{+} gamma-ray transition were detected, the first measurement of this kind, leading to a more precise value for the 2{+} excitation energy of 329(1) keV. Calculations with the particle-rotor model and the core quasiparticle coupling model indicate that the properties of the pi{11/2} band and the proton-decay rates in 145Tm are consistent with the presence of triaxiality with…
New constraints on the Al 25 (p,γ) reaction and its influence on the flux of cosmic γ rays from classical nova explosions
The astrophysical Al25(p,γ)Si26 reaction represents one of the key remaining uncertainties in accurately modeling the abundance of radiogenic Al26 ejected from classical novae. Specifically, the strengths of key proton-unbound resonances in Si26, that govern the rate of the Al25(p,γ) reaction under explosive astrophysical conditions, remain unsettled. Here, we present a detailed spectroscopy study of the Si26 mirror nucleus Mg26. We have measured the lifetime of the 3+, 6.125-MeV state in Mg26 to be 19(3)fs and provide compelling evidence for the existence of a 1- state in the T=1,A=26 system, indicating a previously unaccounted for=1 resonance in the Al25(p,γ) reaction. Using the presently…
Decay and Fission Hindrance of Two- and Four-QuasiparticleKIsomers inRf254
Two isomers decaying by electromagnetic transitions with half-lives of 4.7(1.1) and 247(73) μs have been discovered in the heavy ^{254}Rf nucleus. The observation of the shorter-lived isomer was made possible by a novel application of a digital data acquisition system. The isomers were interpreted as the K^{π}=8^{-}, ν^{2}(7/2^{+}[624],9/2^{-}[734]) two-quasineutron and the K^{π}=16^{+}, 8^{-}ν^{2}(7/2^{+}[624],9/2^{-}[734])⊗8^{-}π^{2}(7/2^{-}[514],9/2^{+}[624]) four-quasiparticle configurations, respectively. Surprisingly, the lifetime of the two-quasiparticle isomer is more than 4 orders of magnitude shorter than what has been observed for analogous isomers in the lighter N=150 isotones. …
Cluster-transfer reactions with radioactive beams: A spectroscopic tool for neutron-rich nuclei
An exploratory experiment performed at REX-ISOLDE to investigate cluster-transfer reactions with radioactive beams in inverse kinematics is presented. The aim of the experiment was to test the potential of cluster-transfer reactions at the Coulomb barrier as a mechanism to explore the structure of exotic neutron-rich nuclei. The reactions Li7(Rb98,αxn) and Li7(Rb98,txn) were studied through particle-γ coincidence measurements, and the results are presented in terms of the observed excitation energies and spins. Moreover, the reaction mechanism is qualitatively discussed as a transfer of a clusterlike particle within a distorted-wave Born approximation framework. The results indicate that cl…
Anomalous Coulomb matrix elements in thef7/2shell
γ decays from high-spin states in the N=Z-1 nucleus 2753Co26 have been identified for the first time. Level energies and Coulomb energy differences between these states and their analogs in its mirror nucleus 53Fe have been compared with large-scale pf shell-model calculations, which offer excellent agreement. New information has been obtained on two-proton Coulomb matrix elements needed in the interpretation. These have been extracted from the data via a number of methods and are shown to exhibit an anomalous behavior for the J=2 coupling.
New constraints on the Al25(p,γ) reaction and its influence on the flux of cosmic γ rays from classical nova explosions
The astrophysical $^{25}\mathrm{Al}(p,\ensuremath{\gamma})\phantom{\rule{0.16em}{0ex}}^{26}\mathrm{Si}$ reaction represents one of the key remaining uncertainties in accurately modeling the abundance of radiogenic $^{26}\mathrm{Al}$ ejected from classical novae. Specifically, the strengths of key proton-unbound resonances in $^{26}\mathrm{Si}$, that govern the rate of the $^{25}\mathrm{Al}(p,\ensuremath{\gamma})$ reaction under explosive astrophysical conditions, remain unsettled. Here, we present a detailed spectroscopy study of the $^{26}\mathrm{Si}$ mirror nucleus $^{26}\mathrm{Mg}$. We have measured the lifetime of the ${3}^{+}$, 6.125-MeV state in $^{26}\mathrm{Mg}$ to be $19(3)\phanto…
Recoil Decay Tagging Study Of Transitional Proton Emitters 145,146,147Tm
International audience; Gamma rays from the transitional proton emitting nuclei 145,146,147Tm have been observed using the recoil-decay tagging technique. The ground state band of 147Tm was confirmed and extended and the unfavoured signature sequence was observed. A ground state rotational band with properties of a decoupled h11/2 band was observed in 145Tm. In addition coincidences between the proton fine structure line and the 2+-->0+ gamma-ray transition in 144Er were detected at the focal plane of the FMA. This is the first time that coincidences between proton radioactive decays and gamma rays have been seen. The particle decay of 146Tm has been measured with improved statistics and a …