0000000000020950

AUTHOR

Jochen Zausch

showing 5 related works from this author

The build-up and relaxation of stresses in a glass-forming soft-sphere mixture under shear: A computer simulation study

2009

Molecular-dynamics computer simulations in conjunction with Lees-Edwards boundary conditions are used to investigate a glass-forming binary Yukawa fluid under shear. The transition from the elastic response to plastic flow is elucidated by studying the stress relaxation after switching off the shear. We find a slow stress relaxation starting from states in the elastic regime and a fast one starting from states in the plastic-flow regime. We show that these relaxation patterns are related to a different distribution of local microscopic stresses in both cases.

Physics::Fluid DynamicsMaterials scienceShear (geology)Yukawa potentialStress relaxationGeneral Physics and AstronomySoft sphereStatistical physicsMechanicsBoundary value problemPlasticityGlass formingEPL (Europhysics Letters)
researchProduct

Residual Stresses in Glasses

2013

The history dependence of the glasses formed from flow-melted steady states by a sudden cessation of the shear rate $\dot\gamma$ is studied in colloidal suspensions, by molecular dynamics simulations, and mode-coupling theory. In an ideal glass, stresses relax only partially, leaving behind a finite persistent residual stress. For intermediate times, relaxation curves scale as a function of $\dot\gamma t$, even though no flow is present. The macroscopic stress evolution is connected to a length scale of residual liquefaction displayed by microscopic mean-squared displacements. The theory describes this history dependence of glasses sharing the same thermodynamic state variables, but differi…

Length scaleThermodynamic stateFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technologyCondensed Matter - Soft Condensed Matterglasses01 natural sciencesMolecular dynamicsResidual stress0103 physical sciencesddc:530Ideal (ring theory)010306 general physicsPhysicsCondensed Matter - Materials ScienceCondensed matter physicsMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnologyShear rateCondensed Matter::Soft Condensed MatterFlow (mathematics)residual stressesSoft Condensed Matter (cond-mat.soft)Relaxation (physics)rheology0210 nano-technologyRheology Glasses Residual Stresses Mode Coupling Theory
researchProduct

A combined molecular dynamics and Monte Carlo study of the approach towards phase separation in colloid-polymer mixtures.

2011

A coarse-grained model for colloid-polymer mixtures is investigated where both colloids and polymer coils are represented as point-like particles interacting with spherically symmetric effective potentials. Colloid-colloid and colloid-polymer interactions are described by Weeks-Chandler-Andersen potentials, while the polymer-polymer interaction is very soft, of strength k(B)T/2 for maximum polymer-polymer overlap. This model can be efficiently simulated both by Monte Carlo and molecular dynamics methods, and its phase diagram closely resembles that of the well-known Asakura-Oosawa model. The static and dynamic properties of the model are presented for systems at critical colloid density, va…

RENORMALIZATIONPolymersMonte Carlo methodBiophysicsThermodynamicsSOFT MATTERMolecular Dynamics SimulationDiffusionColloidMolecular dynamicsFLUIDSCritical point (thermodynamics)PARTICLESGeneral Materials ScienceComputer SimulationColloidsAnisotropyPhase diagramchemistry.chemical_classificationQuantitative Biology::BiomoleculesModels StatisticalChemistryPhysicsPolymerCondensed Matter PhysicsCondensed Matter::Soft Condensed MatterShear rateKineticsSIMULATIONPERTURBATION-THEORYAnisotropyStress MechanicalPAIR POTENTIALSMonte Carlo MethodBEHAVIORINTERFACESAlgorithmsJournal of physics. Condensed matter : an Institute of Physics journal
researchProduct

Statics and dynamics of colloid-polymer mixtures near their critical point of phase separation: A computer simulation study of a continuous Asakura–O…

2008

We propose a new coarse-grained model for the description of liquid-vapor phase separation of colloid-polymer mixtures. The hard-sphere repulsion between colloids and between colloids and polymers, which is used in the well-known Asakura-Oosawa (AO) model, is replaced by Weeks-Chandler-Anderson potentials. Similarly, a soft potential of height comparable to thermal energy is used for the polymer-polymer interaction, rather than treating polymers as ideal gas particles. It is shown by grand-canonical Monte Carlo simulations that this model leads to a coexistence curve that almost coincides with that of the AO model and the Ising critical behavior of static quantities is reproduced. Then the …

Materials sciencecritical pointsMonte Carlo methodFOS: Physical sciencesGeneral Physics and AstronomyThermodynamicsCondensed Matter - Soft Condensed MatterCritical point (mathematics)Molecular dynamicscolloidspolymer solutionsPhysical and Theoretical Chemistryliquid-vapour transformationsBinodalliquid mixturesLennard-Jones potentialMonte Carlo methodsDisordered Systems and Neural Networks (cond-mat.dis-nn)Statistical mechanicsCondensed Matter - Disordered Systems and Neural Networksself-diffusionIdeal gasliquid theoryCondensed Matter::Soft Condensed Mattermolecular dynamics methodLennard-Jones potentialSoft Condensed Matter (cond-mat.soft)Ising modelstatistical mechanicsphase separationThe Journal of Chemical Physics
researchProduct

From equilibrium to steady state: The transient dynamics of colloidal liquids under shear

2008

We investigate stresses and particle motion during the start up of flow in a colloidal dispersion close to arrest into a glassy state. A combination of molecular dynamics simulation, mode coupling theory and confocal microscopy experiment is used to investigate the origins of the widely observed stress overshoot and (previously not reported) super-diffusive motion in the transient dynamics. A link between the macro-rheological stress versus strain curves and the microscopic particle motion is established. Negative correlations in the transient auto-correlation function of the potential stresses are found responsible for both phenomena, and arise even for homogeneous flows and almost Gaussia…

Materials scienceGaussianFOS: Physical sciencesCondensed Matter - Soft Condensed Matterconfocal microscopyMolecular dynamicssymbols.namesakeColloidddc:530General Materials ScienceColloids Glasses Shear Dynamics TransientMagnetosphere particle motionglass forming liquids under shearmode coupling serieDisordered Systems and Neural Networks (cond-mat.dis-nn)MechanicsCondensed Matter - Disordered Systems and Neural NetworksCondensed Matter PhysicsStart upmolecular dynamicsCondensed Matter::Soft Condensed MatterShear (geology)HomogeneousMode couplingsymbolsSoft Condensed Matter (cond-mat.soft)
researchProduct