0000000000020952

AUTHOR

Marco Laurati

Residual Stresses in Glasses

The history dependence of the glasses formed from flow-melted steady states by a sudden cessation of the shear rate $\dot\gamma$ is studied in colloidal suspensions, by molecular dynamics simulations, and mode-coupling theory. In an ideal glass, stresses relax only partially, leaving behind a finite persistent residual stress. For intermediate times, relaxation curves scale as a function of $\dot\gamma t$, even though no flow is present. The macroscopic stress evolution is connected to a length scale of residual liquefaction displayed by microscopic mean-squared displacements. The theory describes this history dependence of glasses sharing the same thermodynamic state variables, but differi…

research product

From equilibrium to steady state: The transient dynamics of colloidal liquids under shear

We investigate stresses and particle motion during the start up of flow in a colloidal dispersion close to arrest into a glassy state. A combination of molecular dynamics simulation, mode coupling theory and confocal microscopy experiment is used to investigate the origins of the widely observed stress overshoot and (previously not reported) super-diffusive motion in the transient dynamics. A link between the macro-rheological stress versus strain curves and the microscopic particle motion is established. Negative correlations in the transient auto-correlation function of the potential stresses are found responsible for both phenomena, and arise even for homogeneous flows and almost Gaussia…

research product