0000000000021502
AUTHOR
Martin Choux
Guidelines to Select Between Self-Contained Electro-Hydraulic and Electro-Mechanical Cylinder
This research paper presents guidelines on how to select between self-contained electro-hydraulic and electromechanical cylinders. An example based on the motion control of a single-boom crane is studied. The sizing process of the different off-the-shelf components is analyzed in terms of design impact when replacing a traditional valve-controlled hydraulic cylinder. The self-contained electro-hydraulic solution is the best choice when a risk for high impact forces is present, when the required output power level lies continuously above 2 kW, or when installation space, weight, and cost are critical design objectives. However, the electro-mechanical solution is expected to show more control…
Fault Diagnosis for Nonlinear Hydraulic-Mechanical Drilling Pipe Handling System
Leakage and increased friction are common faults in hydraulic cylinders that can have serious consequences if they are not detected at early stage. In this paper, the design of a fault detector for a nonlinear hydraulic mechanical system is presented. By considering the system in steady state, two residual signals are generated and analysed with a composite hypothesis test which accommodates for unknown parameters. The resulting detector is able to detect abrupt changes in leakage or friction given the noisy pressure and position measurements. Test rig measurements validate the properties of residuals and high fidelity simulation and experimental results demonstrate the performance and feas…
daptive Backstepping Control of Nonlinear Hydraulic-Mechanical System Including Valve Dynamics
Published version of an article from the journal: Modeling Identification and Control. Also available from publisher: http://dx.doi.org/10.4173/mic.2010.1.3 The main contribution of the paper is the development of an adaptive backstepping controller for a nonlinear hydraulic-mechanical system considering valve dynamics. The paper also compares the performance of two variants of an adaptive backstepping tracking controller with a simple PI controller. The results show that the backstepping controller considering valve dynamics achieves significantly better tracking performance than the PI controller, while handling uncertain parameters related to internal leakage, friction, the orifice equat…
Enabling Energy Savings in Offshore Mechatronic Systems by using Self-Contained Cylinders
This paper proposes a novel actuation system for an offshore drilling application. It consists of three self-contained electro-hydraulic cylinders that can share and store regenerated energy. The energy saving potential of the proposed solution is analyzed through a multibody system simulation. The self-contained system demonstrates superior energy efficiency compared to the benchmark system representing the state-of-the-art approach used today (i.e., valve-controlled cylinders by means of pressure-compensated directional control valves and counter-balance valves, supplied by a centralized hydraulic power unit). Due to the power on demand capability, the cancellation of the throttling losse…
Modeling Stator Winding Inter-Turn Short Circuit Faults in PMSMs including Cross Effects
Author's accepted manuscript. © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This paper presents a detailed analysis of stator winding inter-turn Short Circuit (ITSC) faults, taking the cross effects in the three phases of a permanent magnet synchronous motor (PMSM) into account by considering insulation degradation resistances. A PMSM with series coils in eac…
Parameters identification of induction motor dynamic model for offshore applications
The paper presents a technique to identify parameters of the LuGre dynamic friction model applied to represent mechanical losses of an induction motor. This method is based on Artificial Neural Networks (ANNs) system identification which is able to estimate parameters of nonlinear mathematical models. Within the presented approach, the network is first trained to associate model parameters with predicted friction torque, being given the reference motor speed. When this process completes, the inverse operation is performed and the network delivers estimated parameters of the model based on the reference friction torque. These parameters are then integrated with the dynamic model of the induc…
Hydraulic vs. Electric: A Review of Actuation Systems in Offshore Drilling Equipment
This article presents a survey on actuation systems encountered in offshore drilling applications. Specifically, it focuses on giving a comparison of hydraulic and electric drivetrains along with detailed explanations of their advantages and drawbacks. A significant number of industrial case studies is examined in addition to the collection of academic publications, in order to accurately describe the current market situation. Some key directions of research and development required to satisfy increasing demands on powertrains operating offshore are identified. The impact of the literature and application surveys is further strengthened by benchmarking two designs of a full-scale pipe handl…
Load Torque Estimation Method to Design Electric Drivetrains for Offshore Pipe Handling Equipment
One of the main design objectives for electric drivetrains operating in offshore drilling equipment is to keep them as small, yet as effective, as possible, to minimize space they occupy on drill floor and maximize their performance. However, practical experience shows that typically choices made by design engineers are too conservative due to the lack of enough data characterizing load conditions. This results in too costly and too heavy selected components. Therefore, in the current paper we present a method to estimate required full-scale motor torque using a scaled down experimental setup and its computational model. A gripper arm of an offshore vertical pipe handling machine is selecte…
Diagnosis of Sensor Faults in PMSM and Drive System Based on Structural Analysis
This paper presents a model-based fault diagnosis method to detect sensor faults in permanent magnet synchronous motor (PMSM) drives based on structural analysis technique. The structural model is built based on the dynamic model of the PMSM in matrix form, including unknown variables, known variables, and faults. The Dulmage-Mendelsohn (DM) decomposition is applied to evaluate the redundancy of the model and obtain redundant testable sub-models. These testable redundant sub-models are used to form residuals to observe the system state, and distinguish between healthy and faulty conditions. This work investigates faults in eleven sensors in a PMSM drive, thus nine structured residuals are d…
Drivetrain design optimization for electrically actuated systems via mixed integer programing
The proposed paper presents a method to optimally select components of a drivetrain for an electrically actuated machine. A simple mathematical model of the machine is established and inequality constraints which determine the choice of drivetrain components are formulated. Elements to be picked (namely, a motor, a gearbox, and a drive) are taken from a discrete set of data provided in the catalogs of industrial motors and drives manufacturers. By solving an optimization problem, a combination of components which both satisfy design requirements and minimize the total drivetrain cost is selected. The operation of the selected drivetrain is verified against the motor loadability curves. In a…
Leakage-detection in blade pitch control systems for wind turbines
The main contribution of the work is a systematic study evaluating the performance of different filters for leakage detection in pitch control systems. The effectiveness of the proposed methods is examined in a Matlab/Simulink real-time environment. The test bed consists of the following elements: hydraulic power unit, servo valve, two leakage bypasses, hydraulic cylinder, payload and xPC-based control system. The filters are tested with the state-augmentation and the hypothesis testing approaches. To our knowledge, the comparison of these different approaches has not been done previously for this type of application. The paper concludes on the accuracy and sensitivity of the leakage detect…
Mitigation of Fatigue Damage and Vibration Severity of Electric Drivetrains by Systematic Selection of Motion Profiles
The offshore drilling industry is among the most demanding markets for electrical equipment. Heave motion, irregular cyclic loads, harsh weather conditions, and vibrations are causing accelerated deterioration of drilling equipment. One of the most common solutions to these problems is to design actuation systems of such machinery overly conservative to gain additional safety, which results in too high initial investment and maintenance costs. To mitigate the fatigue damage and vibration severity of rotating elements of electric drivetrains operating offshore, this paper presents a comparative analysis of four popular input functions used in motion control of industrial systems. We evaluate…
Robust adaptive backstepping control design for a Nonlinear Hydraulic-Mechanical System
The complex dynamics that characterize hydraulic systems make it difficult for the control design to achieve prescribed goals in an efficient manner. In this paper, we present the design and analysis of a robust nonlinear controller for a Nonlinear Hydraulic-Mechanical (NHM) System. The system consists of an electrohydraulic servo valve and two hydraulic cylinders. Specifically, by considering a part of the dynamics of the NHM system as a norm-bounded uncertainty, two adaptive controllers are developed based on the backstepping technique that ensure the tracking error signals asymptotically converge to zero despite the uncertainties in the system according to the Barbalat lemma. The resulti…
Detection and Discrimination of Inter-Turn Short Circuit and Demagnetization Faults in PMSMs Based on Structural Analysis
This paper presents a fault diagnosis method based on structural analysis of permanent magnet synchronous motors (PMSMs), focusing on detecting and discriminating two of the most common faults in PMSMs, namely demagnetization and inter-turn short circuit faults. The structural analysis technique uses the dynamic mathematical model of the PMSM in matrix form to evaluate the system’s structural model. After obtaining the analytical redundancy using the over-determined part of the system, it is divided into redundant testable sub-models. Four structured residuals are designed to detect and isolate the investigated faults, which are applied to the system in different time intervals. Finally, th…
Cascade Controller Including Backstepping for Hydraulic-Mechanical Systems
Abstract Development of a cascade controller structure including adaptive backstepping for a nonlinear hydraulic-mechanical system is considered in this paper where a dynamic friction (LuGre) model is included to obtain the necessary accuracy. The paper compares the performance of two variants of an adaptive backstepping tracking controller with earlier results. The new control architecture is analysed and enhanced tracking performance is demonstrated when including the extended friction model. The complexity of the backstepping procedure is significantly reduced due to the cascade structure. Hence, the proposed control structure is better suited to real-time implementation.
Experimental Investigation of Efficiency Map for an Inverter-Fed Surface-Mount Permanent Magnet Synchronous Motor
Losses in inverter-fed permanent magnet motors are underestimated by using analytical or numerical approach since additional losses due to extra harmonics of the frequency converter are normally skipped. Further, losses in switches and passive components of the converter and the effect of switching frequencies cannot be numerically taken into consideration. Loss-minimizing control and proper efficiency analysis of inverter-fed permanent magnet motors cannot be achieved if an efficiency map is built based on a numerical investigation of the motors alone. This works first reviews losses in a surface-mount permanent magnet synchronous motor (SPMSM) and frequency converters. The efficiency map …
A Comparison Study of a Novel Self-Contained Electro-Hydraulic Cylinder versus a Conventional Valve-Controlled Actuator—Part 1: Motion Control
This research paper presents the first part of a comparative analysis of a novel self-contained electro-hydraulic cylinder with passive load-holding capability against a state of the art, valve-controlled actuation system that is typically used in load-carrying applications. The study is carried out on a single-boom crane with focus on the control design and motion performance analysis. First, a model-based design approach is carried out to derive the control parameters for both actuation systems using experimentally validated models. The linear analysis shows that the new drive system has higher gain margin, allowing a considerably more aggressive closed-loop position controller. Several b…
Real-Time Detection of Incipient Inter-Turn Short Circuit and Sensor Faults in Permanent Magnet Synchronous Motor Drives Based on Generalized Likelihood Ratio Test and Structural Analysis.
This paper presents a robust model-based technique to detect multiple faults in permanent magnet synchronous motors (PMSMs), namely inter-turn short circuit (ITSC) and encoder faults. The proposed model is based on a structural analysis, which uses the dynamic mathematical model of a PMSM in an abc frame to evaluate the system’s structural model in matrix form. The just-determined and over-determined parts of the system are separated by a Dulmage–Mendelsohn decomposition tool. Subsequently, the analytical redundant relations obtained using the over-determined part of the system are used to form smaller redundant testable sub-models based on the number of defined fault terms. Furthermore, fo…
Task Planner for Robotic Disassembly of Electric Vehicle Battery Pack
The rapidly growing deployment of Electric Vehicles (EV) put strong demands on the development of Lithium-Ion Batteries (LIBs) but also into its dismantling process, a necessary step for circular economy. The aim of this study is therefore to develop an autonomous task planner for the dismantling of EV Lithium-Ion Battery pack to a module level through the design and implementation of a computer vision system. This research contributes to moving closer towards fully automated EV battery robotic dismantling, an inevitable step for a sustainable world transition to an electric economy. For the proposed task planner the main functions consist in identifying LIB components and their locations, …
Extended friction model of a hydraulic actuated system
The main contribution of this paper is an experimental validation and comparison of three different friction models for an electro-hydraulic servo system. The first is the well-kn own LuGre model which incorporates dynamic friction effects. The second model is based on a relatively recent publication by Yanada in 2008 [6], which incorporates liquid film thickness in the servo valve. The third model is a new contribution presented in this paper, where valve underlap and mass acceleration are combined with the LuGre model. The experimental results show that for hydraulic systems, the film thickness model is an improvement over the LuGre model, while the new model presented in this paper is an…
The Effect of Friction in Passive and Active Heave Compensators of Crown Block Mounted Compensators
Abstract This paper studies the effects of friction model during passive and active heave compensation of offshore drilling equipment. The main purpose of heave compensation while drilling from vessels or semi-submersible platforms is to maintain the drilling operation unaffected by the wave induced motion. The investigated system is of an existing crown mounted compensator. A model of the system is developed which includes mechanics, hydraulics and pneumatics. The passive heave compensation scheme is described including force equalising hydraulic cylinders. In this paper the detrimental effect of friction on the heave compensation performance in both passive and active heave compensation i…
EKF-based estimation and control of electric drivetrain in offshore pipe racking machine
A typical challenge for electric drivetrains is to reduce the number of sensors required for control action or system monitoring. This is particularly important for electric motors operating in offshore conditions, since they work in hostile environment which often damages data acquisition systems. Therefore, this paper deals with verification and validation of the extended Kalman filter (EKF) for sensorless indirect field-oriented control (IFOC) of an induction motor operating in offshore conditions. The EKF is employed to identify the speed of the induction motor based on the measured stator currents and voltages. The estimated speed is used in the motor speed control mode instead of a ph…
Torque peak reduction and overload monitoring of induction motors in offshore drilling operations
Current drivetrain design procedures for electric actuation systems operating in offshore conditions typically consider two major requirements: to provide sufficient steady-state and maximum motor torques. As a result of this, no information regarding the transient state (e.g. during motor acceleration) is utilized when selecting drivetrain components. This leads to potentially dangerous situations when motors undergo saturation in these regions due to too high dynamic loads. A common reason for this (apart from lack of information about transient state when designing a drivetrain) is applying trapezoidal reference motion profiles that cause discontinuities in system acceleration and infini…
A Comparison Study of a Novel Self-Contained Electro-Hydraulic Cylinder versus a Conventional Valve-Controlled Actuator—Part 2: Energy Efficiency
This research paper presents the second part of a comparative analysis of a novel self-contained electro-hydraulic cylinder with passive load-holding capability against a state of the art, valve-controlled hydraulic system that is typically used in load-carrying applications. After addressing the control design and motion performance in the first part of the study, the comparison is now focused on the systems&rsquo