0000000000021621

AUTHOR

Markus Bosmann

The pituitary gland prevents shock-associated death by controlling multiple inflammatory mediators

Abstract Bacterial infections cause a major burden of disease worldwide. Sepsis and septic shock are life-threatening complications of infections. The hypothalamic-pituitary-adrenal (HPA) axis initiates the release of endogenous glucocorticoids that modulate the host stress response and acute inflammation during septic shock. It is an ongoing controversial debate, if therapeutic manipulations of the HPA axis could benefit the clinical situation in the context of shock. Here, we have studied Long Evans rats with hypophysectomy followed by endotoxic shock. The shock-associated lethality was substantially higher in hypophysectomized rats as compared to control mice after cranial sham surgery (…

research product

Fatal neuroinvasion and SARS-CoV-2 tropism in K18-hACE2 mice is partially independent on hACE2 expression

ABSTRACTAnimal models recapitulating distinctive features of severe COVID-19 are critical to enhance our understanding of SARS-CoV-2 pathogenesis. Transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) under the cytokeratin 18 promoter (K18-hACE2) represent a lethal model of SARS-CoV-2 infection. The precise mechanisms of lethality in this mouse model remain unclear. Here, we evaluated the spatiotemporal dynamics of SARS-CoV-2 infection for up to 14 days post-infection. Despite infection and moderate pneumonia, rapid clinical decline or death of mice was invariably associated with viral neuroinvasion and direct neuronal injury (including brain and spinal neurons). Neuroinv…

research product

Advocacy of targeting protease‐activated receptors in severe coronavirus disease 2019

Identifying drug targets mitigating vascular dysfunction, thrombo-inflammation and thromboembolic complications in COVID-19 is essential. COVID-19 coagulopathy differs from sepsis coagulopathy. Factors that drive severe lung pathology and coagulation abnormalities in COVID-19 are not understood. Protein-protein interaction studies indicate that the tagged viral bait protein ORF9c directly interacts with PAR2, which modulates host cell IFN and inflammatory cytokines. In addition to direct interaction of SARS-CoV-2 viral protein with PARs, we speculate that activation of PAR by proteases plays a role in COVID-19-induced hyperinflammation. In COVID-19-associated coagulopathy elevated levels of…

research product

Myeloid Cells Restrict MCMV and Drive Stress- Induced Extramedullary Hematopoiesis through STAT1

Cytomegalovirus (CMV) has a high prevalence worldwide, is often fatal for immunocompromised patients, and causes bone marrow suppression. Deficiency of signal transducer and activator of transcription 1 (STAT1) results in severely impaired antiviral immunity. We have used cell- type restricted deletion of Stat1 to determine the importance of myeloid cell activity for the defense against murine CMV (MCMV). We show that myeloid STAT1 limits MCMV burden and infection- associated pathology in the spleen but does not affect ultimate clearance of infection. Unexpectedly, we found an essential role of myeloid STAT1 in the induction of extramedullary hematopoiesis (EMH). The EMH- promoting function…

research product

Host-Derived CD8+ Dendritic Cells Protect Against Acute Graft-versus-Host Disease after Experimental Allogeneic Bone Marrow Transplantation

Graft-versus-host disease (GVHD) is a frequent life-threatening complication after allogeneic hematopoietic stem cell transplantation (HSCT) and induced by donor-derived T cells that become activated by host antigen-presenting cells. To address the relevance of host dendritic cell (DC) populations in this disease, we used mouse strains deficient in CD11c(+) or CD8α(+) DC populations in a model of acute GVHD where bone marrow and T cells from BALB/c donors were transplanted into C57BL/6 hosts. Surprisingly, a strong increase in GVHD-related mortality was observed in the absence of CD11c(+) cells. Likewise, Batf3-deficient (Batf3(-/-)) mice that lack CD8α(+) DCs also displayed a strongly incr…

research product

Neutrophil extracellular traps impair fungal clearance in a mouse model of invasive pulmonary aspergillosis

Abstract Neutrophil extracellular traps (NETs) are formed by polymorphonuclear neutrophils (PMN) and contribute to the innate host defense by binding and killing bacterial and fungal pathogens. Because NET formation depends on histone hypercitrullination by peptidylarginine deiminase 4 (PAD4), we used PAD4 gene deficient (Pad4-/-) mice in a mouse model of invasive pulmonary aspergillosis (IPA) to address the contribution of NETs to the innate host defense in vivo. After the induction (24 h) of IPA by i.t. infection with Aspergillus fumigatus conidia, Pad4-/- mice revealed lower fungal burden in the lungs, accompanied by less acute lung injury, TNFα and citH3 compared to wildtype controls. T…

research product

CD11c+ Alveolar Macrophages are a Source of IL-23 During Lipopolysaccharide-Induced Acute Lung Injury

Acute lung injury (ALI) is a severe pulmonary disease causing high numbers of fatalities worldwide. Innate immune responses are an integral part of the pathophysiologic events during ALI. Interleukin 23 (IL-23) is a proinflammatory mediator known to direct the inflammatory responses in various settings of infection, autoimmunity, and cancer. Interleukin 23 has been associated with proliferation and effector functions in T(H)17 cells. Surprisingly, little is known about production of IL-23 during ALI. In this study, we found expression of mRNA for IL-23p19 to be 10-fold elevated in lung homogenates of C57BL/6 mice after lipopolysaccharide (LPS)-induced ALI. Likewise, concentrations of IL-23 …

research product

Complement Activation during Critical Illness: Current Findings and an Outlook in the Era of COVID-19

Rationale: Complement is crucial for host defense but may also drive dysregulated inflammation. There is limited understanding of alternative complement function, which can amplify all complement activity, during critical illness. Objectives: We examined the function and key components of the alternative complement pathway in a series of critically ill patients and in a mouse pneumonia model. Methods: Total classical (CH50) and alternative complement (AH50) function were quantified in serum from 321 prospectively enrolled critically ill patients and compared with clinical outcomes. Alternative pathway (AP) regulatory factors were quantified by ELISA (n = 181) and examined via transcriptomic…

research product

IL-27 enhances the lymphocyte mediated innate resistance to primary hookworm infection in the lungs

AbstractInterleukin-27 (IL-27) is a heterodimeric cytokine of the IL-12 family, formed by non-covalent association of the promiscuous EBI3 subunit and selective p28 subunit. IL-27 is produced by mononuclear phagocytes and unfolds pleiotropic immune-modulatory functions through high affinity ligation to IL-27 receptor alpha (IL-27RA). While IL-27 is known to contribute to immunity and to end inflammation following numerous types of infections, its relevance for host defense against multicellular parasites is still poorly defined. Here, we investigated the role of IL-27 during infection with the soil-transmitted hookworm, Nippostrongylus brasiliensis, in its early intrapulmonary life cycle. I…

research product

Gut Microbiota Restricts NETosis in Acute Mesenteric Ischemia-Reperfusion Injury.

Objective: Recruitment of neutrophils and formation of neutrophil extracellular traps (NETs) contribute to lethality in acute mesenteric infarction. To study the impact of the gut microbiota in acute mesenteric infarction, we used gnotobiotic mouse models to investigate whether gut commensals prime the reactivity of neutrophils towards formation of neutrophil extracellular traps (NETosis). Approach and Results: We applied a mesenteric ischemia-reperfusion (I/R) injury model to germ-free (GF) and colonized C57BL/6J mice. By intravital imaging, we quantified leukocyte adherence and NET formation in I/R-injured mesenteric venules. Colonization with gut microbiota or monocolonization with Esch…

research product

Crucial role for Nox2 and sleep deprivation in aircraft noise-induced vascular and cerebral oxidative stress, inflammation, and gene regulation

Abstract Aims Aircraft noise causes endothelial dysfunction, oxidative stress, and inflammation. Transportation noise increases the incidence of coronary artery disease, hypertension, and stroke. The underlying mechanisms are not well understood. Herein, we investigated effects of phagocyte-type NADPH oxidase (Nox2) knockout and different noise protocols (around-the-clock, sleep/awake phase noise) on vascular and cerebral complications in mice. Methods and results C57BL/6j and Nox2 −/− (gp91phox −/−) mice were exposed to aircraft noise (maximum sound level of 85 dB(A), average sound pressure level of 72 dB(A)) around-the-clock or during sleep/awake phases for 1, 2, and 4 days. Adverse effec…

research product

Neuroendocrine Regulation Of The IL-27-Dependent Immune Response In Macrophages

Abstract The central nervous system has the ability for modulating immune responses, but the molecular mechanisms of such interactions are only partly understood. Interleukin-27 (IL-27) is a heterodimeric protein and structurally related to the IL-12 family of cytokines. IL-27 is composed of the subunits EBI3 and p28. The biological functions of IL-27 have been described as either anti-inflammatory or pro-inflammatory depending on the experimental models studied. In the current study, we investigated how production of Interleukin-27 (IL-27) is regulated by neuroendocrine hormones. We focused our work on the subunit p28, since EBI3 is also present in IL-35 and therefore is not a specific com…

research product

Neuroendocrine Modulation of IL-27 in Macrophages

Abstract Heterodimeric IL-27 (p28/EBV-induced gene 3) is an important member of the IL-6/IL-12 cytokine family. IL-27 is predominantly synthesized by mononuclear phagocytes and exerts immunoregulatory functional activities on lymphocytic and nonlymphocytic cells during infection, autoimmunity or neoplasms. There is a great body of evidence on the bidirectional interplay between the autonomic nervous system and immune responses during inflammatory disorders, but so far IL-27 has not been defined as a part of these multifaceted neuroendocrine networks. In this study, we describe the role of catecholamines (as mediators of the sympathetic nervous system) related to IL-27 production in primary …

research product

Interruption of Macrophage-Derived IL-27(p28) Production by IL-10 during Sepsis Requires STAT3 but Not SOCS3

Abstract Severe sepsis and septic shock are leading causes of morbidity and mortality worldwide. Infection-associated inflammation promotes the development and progression of adverse outcomes in sepsis. The effects of heterodimeric IL-27 (p28/EBI3) have been implicated in the natural course of sepsis, whereas the molecular mechanisms underlying the regulation of gene expression and release of IL-27 in sepsis are poorly understood. We studied the events regulating the p28 subunit of IL-27 in endotoxic shock and polymicrobial sepsis following cecal ligation and puncture. Neutralizing Abs to IL-27(p28) improved survival rates, restricted cytokine release, and reduced bacterial burden in C57BL/…

research product

STAT1 Isoforms Differentially Regulate NK Cell Maturation and Anti-tumor Activity

Natural killer (NK) cells are important components of the innate immune defense against infections and cancers. Signal transducer and activator of transcription 1 (STAT1) is a transcription factor that is essential for NK cell maturation and NK cell-dependent tumor surveillance. Two alternatively spliced isoforms of STAT1 exist: a full-length STAT1α and a C-terminally truncated STAT1β isoform. Aberrant splicing is frequently observed in cancer cells and several anti-cancer drugs interfere with the cellular splicing machinery. To investigate whether NK cell-mediated tumor surveillance is affected by a switch in STAT1 splicing, we made use of knock-in mice expressing either only the STAT1α (S…

research product

Pro- and Antitumorigenic Capacity of Immunoproteasomes in Shaping the Tumor Microenvironment

Abstract Apart from the constitutive proteasome, the immunoproteasome that comprises the three proteolytic subunits LMP2, MECL-1, and LMP7 is expressed in most immune cells. In this study, we describe opposing roles for immunoproteasomes in regulating the tumor microenvironment (TME). During chronic inflammation, immunoproteasomes modulated the expression of protumorigenic cytokines and chemokines and enhanced infiltration of innate immune cells, thus triggering the onset of colitis-associated carcinogenesis (CAC) in wild-type mice. Consequently, immunoproteasome-deficient animals (LMP2/MECL-1/LMP7–null mice) were almost completely resistant to CAC development. In patients with ulcerative c…

research product

GLP-1 Analog Liraglutide Improves Vascular Function in Polymicrobial Sepsis by Reduction of Oxidative Stress and Inflammation

Sepsis causes high mortality in the setting of septic shock. LEADER and other trials revealed cardioprotective and anti-inflammatory properties of glucagon-like peptide-1 (GLP-1) analogs like liraglutide (Lira). We previously demonstrated improved survival in lipopolysaccharide (LPS)-induced endotoxemia by inhibition of GLP-1 degradation. Here we investigate the effects of Lira in the polymicrobial sepsis model of cecal ligation and puncture (CLP). C57BL/6J mice were intraperitoneally injected with Lira (200 µg/kg/d

research product

Coexistence of Cullen's and Grey Turner's Signs in Acute Pancreatitis

research product

Macrophages govern antiviral responses in human lung tissues protected from SARS-CoV-2 infection

SUMMARYThe majority of SARS-CoV-2 infections among healthy individuals result in asymptomatic to mild disease. However, the immunological mechanisms defining effective lung tissue protection from SARS-CoV-2 infection remain elusive. Unlike mice solely engrafted with human fetal lung xenograft (fLX), mice co-engrafted with fLX and a myeloid-enhanced human immune system (HNFL mice) are protected against SARS-CoV-2 infection, severe inflammation, and histopathology. Effective control of viral infection in HNFL mice associated with significant macrophage infiltration, and the induction of a potent macrophage-mediated interferon response. The pronounced upregulation of the USP18-ISG15 axis (a ne…

research product

Neutrophil Recruitment Is Regulated By Adamts-13 in a Murine Model of Invasive Aspergillosis

Abstract Introduction: During inflammation von Willebrand factor (VWF) multimers are secreted as an acute phase protein whereupon the size and the prothrombotic activity play an essential role. The size of VWF multimers is regulated by the specific proteolytic activity of ADAMTS-13 (a disintegrin and metalloprotease with ThromboSpondin type 1 repeats-13) which is diminished under several pathological conditions. Employing a murine model of invasive pulmonary aspergillosis (IPA) we aimed to determine the relevance of this regulatory pathway for innate inflammatory responses and polymorphonuclear neutrophil (PMN) recruitment which is crucial for fungal clearance and survival. Methods: IPA was…

research product

The MAVS Immune Recognition Pathway in Viral Infection and Sepsis.

Significance: It is estimated that close to 50 million cases of sepsis result in over 11 million annual fatalities worldwide. The pathognomonic feature of sepsis is a dysregulated inflammatory response arising from viral, bacterial, or fungal infections. Immune recognition of pathogen-associated molecular patterns is a hallmark of the host immune defense to combat microbes and to prevent the progression to sepsis. Mitochondrial antiviral signaling protein (MAVS) is a ubiquitous adaptor protein located at the outer mitochondrial membrane, which is activated by the cytosolic pattern recognition receptors, retinoic acid-inducible gene I (RIG-I) and melanoma differentiation associated gene 5 (M…

research product

Oxidative burst and neutrophil elastase contribute to clearance of Aspergillus fumigatus pneumonia in mice.

Polymorphonuclear neutrophils (PMN) are important for the control of invasive aspergillosis (IA), a major threat to immunocompromised individuals. For clearance of Aspergillus fumigatus infections, PMN employ their potent oxidative and non-oxidative mechanisms. To clarify the relative contribution of these mechanisms, we analyzed p47(phox-/-), gp91(phox-/-) and elastase (ELA) deficient mice (ELANE) after intratracheal infection with A. fumigatus. Infected p47(phox-/-) and gp91(phox-/-) mice died within 4 days and had a significant higher fungal burden in the lungs compared to wild-type controls. Interestingly, the survival of ELANE mice after infection was unimpaired suggesting that ELA is …

research product

Nanomedicine: A Diagnostic and Therapeutic Approach to COVID-19

The SARS-CoV-2 virus is causing devastating morbidity and mortality worldwide. Nanomedicine approaches have a high potential to enhance conventional diagnostics, drugs and vaccines. In fact, lipid nanoparticle/mRNA vaccines are already widely used to protect from COVID-19. In this review, we present an overview of the taxonomy, structure, variants of concern, epidemiology, pathophysiology and detection methods of SARS-CoV-2. The efforts of repurposing, tailoring, and adapting pre-existing medications to battle COVID-19 and the state of vaccine developments are presented. Next, we discuss the broad concepts and limitations of how nanomedicine could address the COVID-19 threat. Nanomaterials …

research product

Platelet proteome analysis reveals an early hyperactive phenotype in SARS-CoV-2-infected humanized ACE2 mice

AbstractCoronavirus disease-2019 (COVID-19) provokes a hypercoagulable state with increased incidence of thromboembolism and mortality. Platelets are major effectors of thrombosis and hemostasis. Suitable animal models are needed to better understand COVID-19-associated coagulopathy (CAC) and underlying platelet phenotypes. Here, we assessed K18-hACE2 mice undergoing a standardized SARS-CoV-2 infection protocol to study dynamic platelet responses via mass spectrometry-based proteomics. In total, we found significant changes in >1,200 proteins. Strikingly, protein alterations occurred rapidly by 2 days post-infection (dpi) and preceded outward clinical signs of severe disease. Pathway enr…

research product