0000000000023243

AUTHOR

Riccardo Amorati

showing 4 related works from this author

Direct chemical grafted curcumin on halloysite nanotubes as dual-responsive prodrug for pharmacological applications

2016

Covalently functionalized halloysite nanotubes (HNTs) were successfully employed as dual-responsive nanocarriers for curcumin (Cur). Particularly, we synthesized HNT-Cur prodrug with a controlled curcumin release on dependence of both intracellular glutathione (GSH) and pH conditions. In order to obtain HNT-Cur produgs, halloysite was firstly functionalized with cysteamine through disulphide linkage. Afterwards, curcumin molecules were chemically conjugated to the amino end groups of halloysite via Schiff's base formation. The successful functionalization of halloysite was proved by thermogravimetric analysis, FT-IR spectroscopy, dynamic light scattering and scanning electron microscopy. Ex…

Halloysite nanotubeAntiproliferative activity02 engineering and technology01 natural scienceshalloysite nanotubes covalent functionalization curcumin prodrugchemistry.chemical_compoundColloid and Surface ChemistryOrganic chemistryProdrugsProdrugSettore CHIM/02 - Chimica FisicaDrug CarriersNanotubesChemistryAntioxidant propertieFree Radical ScavengersSurfaces and InterfacesGeneral MedicineProdrug021001 nanoscience & nanotechnologyDrug deliveryAluminum Silicates0210 nano-technologyDrug carrierOxidation-ReductionBiotechnologyCurcuminCell SurvivalAntineoplastic AgentsHalloysite nanotubes Curcumin Prodrug Antiproliferative activity Antioxidant propertiesengineering.materialConjugated system010402 general chemistryHalloysiteCell Line TumorHumansPhysical and Theoretical ChemistryCell ProliferationSettore CHIM/06 - Chimica OrganicaCombinatorial chemistry0104 chemical sciencesKineticsMicroscopy Electron ScanningengineeringCurcuminSettore BIO/14 - FarmacologiaClayPharmaceuticsNanocarriers
researchProduct

A synergic nanoantioxidant based on covalently modified halloysite–trolox nanotubes with intra-lumen loaded quercetin

2016

We describe the preparation and properties of the first example of a synergic nanoantioxidant, obtained by different functionalizations of the external surface and the inner lumen of halloysite nanotubes (HNTs). Trolox, a mimic of natural α-tocopherol, was selectively grafted on the HNT external surface; while quercetin, a natural polyphenolic antioxidant, was loaded into the inner lumen to afford a bi-functional nanoantioxidant, HNT–Trolox/Que, which was investigated for its reactivity with transient peroxyl radicals and a persistent 1,1-diphenyl-2-picrylhydrazyl (DPPH˙) radical in comparison with the corresponding mono-functional analogues HNT–Trolox and HNT/Que. Both HNT–Trolox and HNT/Q…

halloysite nanotubes antioxidants peroxyl radicals quercetin Trolox synergismAntioxidantRadicalmedicine.medical_treatmentBiomedical Engineering02 engineering and technology010402 general chemistry01 natural scienceschemistry.chemical_compoundReaction rate constantmedicinehalloysite trolox release quercetin antioxidantOrganic chemistryGeneral Materials ScienceAcetonitrileSettore CHIM/02 - Chimica FisicaAutoxidationChemistryGeneral ChemistryGeneral MedicineSettore CHIM/06 - Chimica Organica021001 nanoscience & nanotechnology0104 chemical sciencesChlorobenzeneTrolox0210 nano-technologyQuercetinNuclear chemistry
researchProduct

Improving the Frying Performance and Oxidative Stability of Refined Soybean Oil by Tocotrienol-Rich Unsaponifiable Matters of Kolkhoung (Pistacia khi…

2018

Increasing consumer awareness for all natural products has quickly led to growing research on new resources of potent and profitable natural antioxidants. In this context, for the first time, the Kolkhoung hull oil (KHO) (Pistacia khinjuk)-unsaponifiable matters (USM) (UHO) (100, 200, and 400 mg kg−1) were incorporated into refined soybean oil (RSO) and the oxidative stability of prepared oils was measured during 32 hours of frying. Then, the obtained results (oxidative stability) were compared to the samples containing tert-butyl hydroquinone (TBHQ) (100 mg kg−1) as a common synthetic antioxidant. According to the results of oxidative stability assays of acid values, conjugated diene value…

Unsaponifiable matterfood.ingredientTocotrienolGeneral Chemical Engineering010401 analytical chemistryOrganic Chemistry04 agricultural and veterinary sciencesAntioxidant compoundTotal polar compound040401 food science01 natural sciencesSoybean oil0104 chemical scienceschemistry.chemical_compound0404 agricultural biotechnologyfoodchemistryUnsaponifiableConjugated diene valueChemical Engineering (all)Pistacia khinjukTocotrienolFood scienceKolkhoung hull oilJournal of the American Oil Chemists' Society
researchProduct

Nanosponges for the protection and release of the natural phenolic antioxidants quercetin, curcumin and phenethyl caffeate

2020

The inclusion of polyphenols into nanoporous materials may significantly improve their application as radical trapping agents for therapeutic purposes. In the present work, nanosponges based on hypercross- linked cyclodextrins and calixarenes (NS1–NS3) were used as carriers of three natural phenolic antioxidants: quercetin (Que), curcumin (Cur) and phenethyl caffeate (Phec). Good w/w loadings, namely 7.3% for the Que–NS1 composite, 17.3% for Cur–NS2 and 12.9% for Phec–NS3, were achieved. The release kinetics and the inhibition rate constants (kinh) of the reaction with alkylperoxyl radicals (ROO.) in 0.1 M phosphate buffer solutions at pH 7.4 were studied and indicated better antioxidant ac…

AntioxidantRadicalmedicine.medical_treatmentnanosponges02 engineering and technology010402 general chemistryrelease01 natural scienceschemistry.chemical_compoundReaction rate constantmedicineOrganic chemistryGeneral Materials SciencePhenolspolyphenolsSettore CHIM/06 - Chimica Organica021001 nanoscience & nanotechnologyControlled release0104 chemical scienceschemistryChemistry (miscellaneous)PolyphenolCurcuminquercitin curcumin phenethyl caffeate nanosponges antioxidant activity0210 nano-technologyQuercetin
researchProduct