0000000000023530

AUTHOR

Natalia Mara Vera-velasco

Exploring the Human-Nipah Virus Protein-Protein Interactome

ABSTRACT Nipah virus is an emerging, highly pathogenic, zoonotic virus of the Paramyxoviridae family. Human transmission occurs by close contact with infected animals, the consumption of contaminated food, or, occasionally, via other infected individuals. Currently, we lack therapeutic or prophylactic treatments for Nipah virus. To develop these agents we must now improve our understanding of the host-virus interactions that underpin a productive infection. This aim led us to perform the present work, in which we identified 101 human-Nipah virus protein-protein interactions (PPIs), most of which (88) are novel. This data set provides a comprehensive view of the host complexes that are manip…

research product

Insecticidal spectrum and mode of action of the Bacillus thuringiensis Vip3Ca insecticidal protein.

The Vip3Ca protein, discovered in a screening of Spanish collections of Bacillus thuringiensis, was known to be toxic to Chrysodeixis chalcites, Mamestra brassicae and Trichoplusia ni. In the present study, its activity has been tested with additional insect species and we found that Cydia pomonella is moderately susceptible to this protein. Vip3Ca (of approximately 90 kDa) was processed to an approximately 70 kDa protein when incubated with midgut juice in all tested species. The kinetics of proteolysis correlated with the susceptibility of the insect species to Vip3Ca. The activation was faster to slower in the following order: M. brassicae (susceptible), Spodoptera littoralis (moderately…

research product

Unshared binding sites for Bacillus thuringiensis Cry3Aa and Cry3Ca proteins in the weevil Cylas puncticollis (Brentidae)

Bacillus thuringiensis Cry3Aa and Cry3Ca proteins have been reported to be toxic against the African sweetpotato pest Cylas puncticollis. In the present work, the binding sites of these proteins in C. puncticollis brush border vesicles suggest the occurrence of different binding sites, but only one of them is shared. Our results suggest that pest resistance mediated by alteration of the shared Cry-receptor binding site might not render both Cry proteins ineffective.

research product

Proteomic composition of Nipah virus-like particles

Abstract Virions are often described as virus-only entities with no cellular components with the exception of the lipids in their membranes. However, advances in proteomics are revealing substantial amounts of host proteins in the viral particles. In the case of Nipah virus (NiV), the viral components in the virion have been known for some time. Nonetheless, no information has been obtained regarding the cellular proteins in the viral particles. To address this question, we produced Virus-Like Particles (VLPs) for NiV by expressing the F, G and M proteins in human-derived cells. Next, the proteomic content in these VLPs was analyzed by LC-MS/MS. We identified 67 human proteins including sol…

research product

Shared Binding Sites for the Bacillus thuringiensis Proteins Cry3Bb, Cry3Ca, and Cry7Aa in the African Sweet Potato Pest Cylas puncticollis (Brentidae)

ABSTRACT Bacillus thuringiensis Cry3Bb, Cry3Ca, and Cry7Aa have been reported to be toxic against larvae of the genus Cylas , which are important pests of sweet potato worldwide and particularly in sub-Saharan Africa. However, relatively little is known about the processing and binding interactions of these coleopteran-specific Cry proteins. The aim of the present study was to determine whether Cry3Bb, Cry3Ca, and Cry7Aa proteins have shared binding sites in Cylas puncticollis to orient the pest resistance strategy by genetic transformation. Interestingly, processing of the 129-kDa Cry7Aa protoxin using commercial trypsin or chymotrypsin rendered two fragments of about 70 kDa and 65 kDa. N-…

research product

The Independent Biological Activity of Bacillus thuringiensis Cry23Aa Protein Against Cylas puncticollis

The Cry23Aa/Cry37Aa proteins from Bacillus thuringiensis (Bt) have been described toxic to Cylas puncticollis larvae. In general, it is believed that Cry23Aa and Cry37Aa act jointly to exert the insecticidal activity, while there is no evidence of their toxicity individually. Therefore, in the present study, the contribution of each protein in the insecticidal activity toward C. puncticollis larvae has been assessed. The results showed that both proteins were toxic for C. puncticollis larvae when tested individually. Contrary to what was claimed previously, our results suggest that the presence of both proteins is not necessary to exert toxicity against C. puncticollis larvae. Also, the bin…

research product