0000000000024501

AUTHOR

Alberto Lopera

showing 29 related works from this author

Aryl-bis-(scorpiand)-aza receptors differentiate between nucleotide monophosphates by a combination of aromatic, hydrogen bond and electrostatic inte…

2014

Bis-polyaza pyridinophane scorpiands bind nucleotides in aqueous medium with 10–100 micromolar affinity, predominantly by electrostatic interactions between nucleotide phosphates and protonated aliphatic amines and assisted by aromatic stacking interactions. The pyridine-scorpiand receptor showed rare selectivity toward CMP with respect to other nucleotides, whereby two orders of magnitude affinity difference between CMP and UMP was the most appealing. The phenanthroline-scorpiand receptor revealed at pH 5 strong selectivity toward AMP with respect to other NMPs, based on the protonation of adenine heterocyclic N1. The results stress that the efficient recognition of small biomolecules with…

Models MolecularMacrocyclic CompoundsMagnetic Resonance Spectroscopyscorpiand receptor; nucleotide recognition; NMR; fluorescenceStereochemistryStatic ElectricityStackingProtonation010402 general chemistry01 natural sciencesBiochemistryPhosphateschemistry.chemical_compoundMoietyNucleotidePhysical and Theoretical Chemistrychemistry.chemical_classificationAza CompoundsMolecular Structure010405 organic chemistryHydrogen bondChemistryNucleotidesPhysicsArylBiomoleculeOrganic ChemistryHydrogen BondingHydrogen-Ion Concentration0104 chemical sciencesChemistrySelectivityOrganicbiomolecular chemistry
researchProduct

Recognition, Transformation, Detection of Nucleotides and Aqueous Nucleotide-Based Materials

2019

chemistry.chemical_classificationTransformation (genetics)Aqueous solutionChemistryNucleotideSoft materialsCombinatorial chemistry
researchProduct

Influence of the chain length and metal : ligand ratio on the self-organization processes of Cu2+ complexes of [1 + 1] 1H-pyrazole azamacrocycles

2020

Three new [1 + 1] macrocycles formed by the reaction of 1H-3,5-bis(chloromethyl)pyrazole with the tosylated amines 1,4,7,10-tetraazadecane (L1), 1,4,8,11-tetraazaundecane (L2) and 1,5,10,14-tetraazatetradecane (L3) are described. Potentiometric studies and HR-ESI-Mass spectrometry show the formation of dimeric binuclear Cu2+ complexes whose organization depends on the type of hydrocarbon chains connecting the amine groups. Furthermore, trinuclear or/and tetranuclear complexes are formed depending also on the length of the polyaminic bridge and on the sequence of the hydrocarbon chains. The crystal structures of the [2 + 2] [Cu2(H(H−1L2))2](ClO4)4·4H2O (1) and [Cu2(H−1L2)2](ClO4)2 (2) comple…

Inorganic ChemistryCrystallographychemistry.chemical_compoundDenticityChemistryLigandMetal ions in aqueous solutionOctahedral molecular geometryAmine gas treatingProtonationCrystal structurePyrazoleDalton Transactions
researchProduct

Water and oxoanion encapsulation chemistry in a 1H-pyrazole azacryptand

2019

Anion complexes of the cryptand built with the tripodal amine tris(2-aminoethyl)amine, known as tren, with water and several oxoanions of biological and environmental interest (nitrate, sulfate, phosphate, perchlorate and arsenate) have been crystallized from aqueous solution and resolved with single-crystal X-ray diffraction. All crystals show guest species encapsulated in the interior of the cavity as well as, in some cases, sitting in the grooves defined by the arms of the macrocycle. Hydrogen bonding and electrostatic interactions play a major role in anion binding to the host. The macrocycle is able to encapsulate anions in a wide range of protonation degrees. Solution studies have bee…

Aqueous solutionChemistryHydrogen bondCryptandProtonation02 engineering and technologyGeneral ChemistryPyrazole010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCatalysis0104 chemical sciencesPerchloratechemistry.chemical_compoundPolymer chemistryMaterials ChemistryAmine gas treating0210 nano-technologyAnion bindingNew Journal of Chemistry
researchProduct

Tripyridinophane Platform Containing Three Acetate Pendant Arms: An Attractive Structural Entry for the Development of Neutral Eu(III) and Tb(III) Co…

2020

We report a detailed characterization of Eu3+ and Tb3+ complexes derived from a tripyridinophane macro cycle bearing three acetate side arms (H3tpptac). Tpptac3- displays an overall basicity (Σ log KiH) of 24.5, provides the formation of mononuclear ML species, and shows a good binding affinity for Ln3+ (log KLnL = 17.5-18.7). These complexes are also thermodynamically stable at physiological pH (pEu = 18.6, pTb = 18.0). It should be noted that the pGd value of Gd-tpptac (18.4) is only slightly lower than that of commercially available MRI contrast agents such as Gd-dota (pGd = 19.2). Moreover, a very good selectivity for these ions over the endogenous cations (log KCuL = 14.4, log KZnL = 1…

LanthanideAqueous solution010405 organic chemistrychemistry.chemical_elementTerbium010402 general chemistryLigand (biochemistry)01 natural sciences0104 chemical sciencesInorganic ChemistryCrystallographychemistryMolecule[CHIM.COOR]Chemical Sciences/Coordination chemistryPhysical and Theoretical ChemistryBond energyEuropiumLuminescence
researchProduct

Selective encapsulation of a chloride anion in a 1H-pyrazole Cu2+ metallocage

2021

A self-assembled metallobox from copper(ii) and two macrocycles containing 1H-pyrazole ligands has been prepared. The internal cavity of the box is able to selectively encapsulate a single chloride anion over any other halide anion.

Internal cavityHalidechemistry.chemical_elementPyrazoleCombinatorial chemistryChlorideCopperEncapsulation (networking)IonInorganic Chemistrychemistry.chemical_compoundchemistrymedicinemedicine.drugDalton Transactions
researchProduct

>3 + 1 = 6 + 2> In Cu(ii) coordination chemistry of 1H-pyrazole aza cryptands

2015

A polyazamacrocycle formed from two tris(2-aminoethyl)amine units connected by 1H-pyrazole units shows unique hexanuclear Cu(ii) complexes by combination of two binuclear Cu(ii) cryptand complexes through pyrazolate moieties belonging to both cryptands. The formation of these dimeric entities has been proven both in solution by potentiometric studies and mass spectroscopy and in the solid state by X-ray diffraction of crystals of three different batches of formulae [Cu6(H-3L)2(H2O)2](TsO)6·22H2O (2), [Cu6(H-3L)2(NO3)2](NO3)4·2H2O (3) and [Cu6(H-3L)2Cl2]Cl4·(C4H5N3O2)2·14.35H2O (4). The hexanuclear unit in 2 and 4 can be viewed like three magnetically independent binuclear complexes with J =…

Inorganic ChemistryTrischemistry.chemical_classificationCrystallographychemistry.chemical_compoundchemistryStereochemistryPotentiometric titrationCryptandSolid-stateAmine gas treatingPyrazoleCoordination complex
researchProduct

Hybrid GMP–polyamine hydrogels as new biocompatible materials for drug encapsulation

2020

Here we present the preparation and characterization of new biocompatible materials for drug encapsulation. These new gels are based on positively charged [1+1] 1H-pyrazole-based azamacrocycles which minimise the electrostatic repulsions between the negatively charged GMP molecules. Rheological measurements confirm the electroneutral hydrogel structure as the most stable for all the GMP-polyamine systems. Nuclear magnetic resonance (NMR) was employed to investigate the kinetics of the hydrogel formation and cryo-scanning electron microscopy (cryo-SEM) was used to obtain information about the hydrogel morphology, which exhibited a non-homogeneous structure with a high degree of cross-linking…

010405 organic chemistryKineticstechnology industry and agricultureBiocompatible MaterialsHydrogelsmacromolecular substancesGeneral Chemistry010402 general chemistryCondensed Matter PhysicsBiocompatible materialcomplex mixtures01 natural sciences0104 chemical scienceschemistry.chemical_compoundchemistryChemical engineeringSelf-healing hydrogelsMicroscopy Electron ScanningPolyaminesMoleculeDrug encapsulationRheologyPolyamineSoft Matter
researchProduct

CCDC 1912383: Experimental Crystal Structure Determination

2019

Related Article: Javier Pitarch-Jarque, Kari Rissanen, Santiago García-Granda, Alberto Lopera, M. Paz Clares, Enrique García-España, Salvador Blasco|2019|New J.Chem.|43|18915|doi:10.1039/C9NJ05231C

Space GroupCrystallography61H161H251H-1481114182326-octaza-625(35)16(53)-tripyrazolabicyclo[9.9.9]nonacosaphan-14814182327-heptaium perchlorate clathrate hexaperchlorate tetrahydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1964484: Experimental Crystal Structure Determination

2020

Related Article: Nadine Leygue, Chantal Galaup, Alberto Lopera, Estefanía Delgado-Pinar, René M. Williams, Heinz Gornitzka, Jurriaan M. Zwier, Enrique García-España, Laurent Lamarque, Claude Picard|2020|Inorg.Chem.|59|1496|doi:10.1021/acs.inorgchem.9b03345

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersaqua-{22'2''-[31119252627-hexaazatetracyclo[19.3.1.159.11317]heptacosa-1(25)5(27)6813(26)14162123-nonaene-31119-triyl]tris(acetato)}-terbium(iii) hydrateExperimental 3D Coordinates
researchProduct

CCDC 1953932: Experimental Crystal Structure Determination

2020

Related Article: Alberto Lopera, Ariadna Gil-Martínez, Javier Pitarch-Jarque, Begoña Verdejo, Salvador Blasco, M. Paz Clares, Hermas R. Jiménez, Enrique García-España|2020|Dalton Trans.|49|8614|doi:10.1039/D0DT01056A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu-3711151819-hexaazabicyclo[15.2.1]icosa-1(20)17-diene)-bis(mu-hydroxo)-chloro-di-copper-di-palladium bis(mu-3711151819-hexaazabicyclo[15.2.1]icosa-1(20)17-diene)-bis(mu-hydroxo)-chloro-copper-tri-palladium diperchlorate bromide chloride hydrateExperimental 3D Coordinates
researchProduct

CCDC 1953930: Experimental Crystal Structure Determination

2020

Related Article: Alberto Lopera, Ariadna Gil-Martínez, Javier Pitarch-Jarque, Begoña Verdejo, Salvador Blasco, M. Paz Clares, Hermas R. Jiménez, Enrique García-España|2020|Dalton Trans.|49|8614|doi:10.1039/D0DT01056A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(3610131617-hexaazabicyclo[13.2.1]octadeca-1(17)15(18)-dienato)-di-copper(ii) bromide chloride hydrateExperimental 3D Coordinates
researchProduct

CCDC 1990725: Experimental Crystal Structure Determination

2020

Related Article: Alberto Lopera, Ariadna Gil-Martínez, Javier Pitarch-Jarque, Begoña Verdejo, Salvador Blasco, M. Paz Clares, Hermas R. Jiménez, Enrique García-España|2020|Dalton Trans.|49|8614|doi:10.1039/D0DT01056A

Space GroupCrystallographyCrystal Systembis(mu-3610131617-hexaazabicyclo[13.2.1]octadeca-1(18)15-dienato)-di-copper diperchlorateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 983272: Experimental Crystal Structure Determination

2015

Related Article: Javier Pitarch-Jarque, Raquel Belda, Francesc Lloret, Jesús Ferrando-Soria, Pilar Navarro, Alberto Lopera, Enrique García-España|2015|Dalton Trans.|44|3378|doi:10.1039/C4DT03650F

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu-147811141720212429323336-tetradecaazapentacyclo[12.12.12.169.11922.13134]hentetraconta-6(41)81922(40)31(39)33-hexaene-72132-triyl)-diaqua-hexa-copper hexakis(4-methylbenzenesulfonate) docosahydrateExperimental 3D Coordinates
researchProduct

CCDC 983271: Experimental Crystal Structure Determination

2015

Related Article: Javier Pitarch-Jarque, Raquel Belda, Francesc Lloret, Jesús Ferrando-Soria, Pilar Navarro, Alberto Lopera, Enrique García-España|2015|Dalton Trans.|44|3378|doi:10.1039/C4DT03650F

Space GroupCrystallographyCrystal System(mu-147811141720212429323336-tetradecaazapentacyclo[12.12.12.169.11922.13134]hentetraconta-6(41)81922(40)31(39)33-hexaene-721-diyl)-di-copper(ii) diperchlorate dihydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 983274: Experimental Crystal Structure Determination

2015

Related Article: Javier Pitarch-Jarque, Raquel Belda, Francesc Lloret, Jesús Ferrando-Soria, Pilar Navarro, Alberto Lopera, Enrique García-España|2015|Dalton Trans.|44|3378|doi:10.1039/C4DT03650F

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu-147811141720212429323336-tetradecaazapentacyclo[12.12.12.169.11922.13134]hentetraconta-6(41)81922(40)31(39)33-hexaene-72132-triyl)-dichloro-hexa-copper tetrachloride 2-aminopyrimidin-4(1H)-one solvate hydrateExperimental 3D Coordinates
researchProduct

CCDC 1994847: Experimental Crystal Structure Determination

2021

Related Article: Javier Pitarch-Jarque, Hermas R. Jiménez, Elina Kalenius, Salvador Blasco, Alberto Lopera, M. Paz Clares, Kari Rissanen, Enrique García-España|2021|Dalton Trans.|50|9010|doi:10.1039/D1DT01302E

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu-39121316222526-octa-azatricyclo[22.2.1.11114]octacosa-1(27)11(28)1324-tetraene-1216-diato)-tetra-copper tris(iodo)-copper tri-iodide iodide perchlorate unknown solvateExperimental 3D Coordinates
researchProduct

CCDC 1912382: Experimental Crystal Structure Determination

2019

Related Article: Javier Pitarch-Jarque, Kari Rissanen, Santiago García-Granda, Alberto Lopera, M. Paz Clares, Enrique García-España, Salvador Blasco|2019|New J.Chem.|43|18915|doi:10.1039/C9NJ05231C

61H161H251H-1481114182326-octaza-61625(35)-tripyrazolabicyclo[9.9.9]nonacosaphan-462814162182325227-nonaium (hydrogen sulfate) clathrate bis(hydrogen sulfate) trisulfate hexahydrateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1953929: Experimental Crystal Structure Determination

2020

Related Article: Alberto Lopera, Ariadna Gil-Martínez, Javier Pitarch-Jarque, Begoña Verdejo, Salvador Blasco, M. Paz Clares, Hermas R. Jiménez, Enrique García-España|2020|Dalton Trans.|49|8614|doi:10.1039/D0DT01056A

Space GroupCrystallographyCrystal SystemCrystal Structurebis(mu-3610131617-hexaazabicyclo[13.2.1]octadeca-1(17)15(18)-dienato-10-ium)-di-copper(ii) tetraperchlorate tetrahydrateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 983273: Experimental Crystal Structure Determination

2015

Related Article: Javier Pitarch-Jarque, Raquel Belda, Francesc Lloret, Jesús Ferrando-Soria, Pilar Navarro, Alberto Lopera, Enrique García-España|2015|Dalton Trans.|44|3378|doi:10.1039/C4DT03650F

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu-147811141720212429323336-tetradecaazapentacyclo[12.12.12.169.11922.13134]hentetraconta-6(41)81922(40)31(39)33-hexaene-72132-triyl)-dinitrato-hexa-copper tetrakis(nitrate) dihydrateExperimental 3D Coordinates
researchProduct

CCDC 1912384: Experimental Crystal Structure Determination

2019

Related Article: Javier Pitarch-Jarque, Kari Rissanen, Santiago García-Granda, Alberto Lopera, M. Paz Clares, Enrique García-España, Salvador Blasco|2019|New J.Chem.|43|18915|doi:10.1039/C9NJ05231C

Space GroupCrystallography61H161H251H-1481114182326-octaza-625(35)16(53)-tripyrazolabicyclo[9.9.9]nonacosaphan-4814182327-hexaium (dihydrogen arsenate) clathrate dihydrogen arsenate tetrakis(trifluoromethanesulfonate) arsoric acid trihydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1994844: Experimental Crystal Structure Determination

2021

Related Article: Javier Pitarch-Jarque, Hermas R. Jiménez, Elina Kalenius, Salvador Blasco, Alberto Lopera, M. Paz Clares, Kari Rissanen, Enrique García-España|2021|Dalton Trans.|50|9010|doi:10.1039/D1DT01302E

Space GroupCrystallographyCrystal Systembis(mu-39121316222526-octaazatricyclo[22.2.1.11114]octacosa-1(27)11(28)1324-tetraene-1226-diyl)-dibromo-tetra-copper(ii) bis[(mu-39121316222526-octaazatricyclo[22.2.1.11114]octacosa-1(27)11(28)1324-tetraene-1226-diyl)-di-copper(ii)] pentakis(bromide) tribromo-copper(i) unknown solvate hydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1994845: Experimental Crystal Structure Determination

2021

Related Article: Javier Pitarch-Jarque, Hermas R. Jiménez, Elina Kalenius, Salvador Blasco, Alberto Lopera, M. Paz Clares, Kari Rissanen, Enrique García-España|2021|Dalton Trans.|50|9010|doi:10.1039/D1DT01302E

Space GroupCrystallographyCrystal Systembis(mu-39121316222526-octa-azatricyclo[22.2.1.11114]octacosa-1(27)11(28)1324-tetraene-1216-diato)-(mu-chloro)-aqua-chloro-tetra-copper dichloride dihydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1994846: Experimental Crystal Structure Determination

2021

Related Article: Javier Pitarch-Jarque, Hermas R. Jiménez, Elina Kalenius, Salvador Blasco, Alberto Lopera, M. Paz Clares, Kari Rissanen, Enrique García-España|2021|Dalton Trans.|50|9010|doi:10.1039/D1DT01302E

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu-39121316222526-octa-azatricyclo[22.2.1.11114]octacosa-1(27)11(28)1324-tetraene-1216-diato)-tetra-aqua-tetra-copper bis(hexafluorophosphate) difluoride hydrateExperimental 3D Coordinates
researchProduct

CCDC 1953933: Experimental Crystal Structure Determination

2020

Related Article: Alberto Lopera, Ariadna Gil-Martínez, Javier Pitarch-Jarque, Begoña Verdejo, Salvador Blasco, M. Paz Clares, Hermas R. Jiménez, Enrique García-España|2020|Dalton Trans.|49|8614|doi:10.1039/D0DT01056A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu-3711151819-hexaazabicyclo[15.2.1]icosa-1(20)17-dienato)-bis(mu-hydroxo)-tetra-copper perchlorate bromide chloride hydroxideExperimental 3D Coordinates
researchProduct

CCDC 1912380: Experimental Crystal Structure Determination

2019

Related Article: Javier Pitarch-Jarque, Kari Rissanen, Santiago García-Granda, Alberto Lopera, M. Paz Clares, Enrique García-España, Salvador Blasco|2019|New J.Chem.|43|18915|doi:10.1039/C9NJ05231C

Space GroupCrystallographyCrystal System61H161H251H-1481114182326-octaza-625(35)16(53)-tripyrazolabicyclo[9.9.9]nonacosaphan-146281114162182325227-undecaium (dihydrogen phosphate) clathrate decakis(dihydrogen phosphate) tetrahydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1912379: Experimental Crystal Structure Determination

2019

Related Article: Javier Pitarch-Jarque, Kari Rissanen, Santiago García-Granda, Alberto Lopera, M. Paz Clares, Enrique García-España, Salvador Blasco|2019|New J.Chem.|43|18915|doi:10.1039/C9NJ05231C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters61H161H251H-1481114182326-octaza-625(35)16(53)-tripyrazolabicyclo[9.9.9]nonacosaphan-4814182327-hexaium nitrate clathrate pentanitrate pentahydrateExperimental 3D Coordinates
researchProduct

CCDC 1912378: Experimental Crystal Structure Determination

2019

Related Article: Javier Pitarch-Jarque, Kari Rissanen, Santiago García-Granda, Alberto Lopera, M. Paz Clares, Enrique García-España, Salvador Blasco|2019|New J.Chem.|43|18915|doi:10.1039/C9NJ05231C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters61H161H251H-1481114182326-octaza-625(35)16(53)-tripyrazolabicyclo[9.9.9]nonacosaphan-814-diium diperchlorate dihydrate clathrate hydrateExperimental 3D Coordinates
researchProduct

CCDC 1912381: Experimental Crystal Structure Determination

2019

Related Article: Javier Pitarch-Jarque, Kari Rissanen, Santiago García-Granda, Alberto Lopera, M. Paz Clares, Enrique García-España, Salvador Blasco|2019|New J.Chem.|43|18915|doi:10.1039/C9NJ05231C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters61H161H251H-1481114182326-octaza-61625(35)-tripyrazolabicyclo[9.9.9]nonacosaphan-4814182327-hexaium (dihydrogen phosphate) clathrate pentakis(dihydrogen phosphate) octahydrateExperimental 3D Coordinates
researchProduct