0000000000026881
AUTHOR
Dominique Faudot
Bords d'une surface médiane : Identifications et applications
National audience; Un squelette d'une forme fermée est une structure mince, centrée dans cette forme, décrivant sa topologie et sa géométrie. Les squelettes permettent de développer des applications interactives en synthèse d'images~: l'utilisateur peut manipuler intuitivement des formes en modifiant leurs squelettes. Parmi toutes les formulations de squelettes, nous nous intéressons en particulier à la surface médiane. Ses éléments, nommés atomes, sont les sphères maximales intérieures à la forme décrite. Les positions des atomes sont organisées en courbes et surfaces, qui composent la structure squelettale. Cette structure peut être d'une grande aide pour manipuler une forme. Cependant, e…
From A Medial Surface To A Mesh
Medial surfaces are well-known and interesting surface skeletons. As such, they can describe the topology and the geometry of a 3D closed object. The link between an object and its medial surface is also intuitively understood by people. We want to exploit such skeletons to use them in applications like shape creation and shape deformation. For this purpose, we need to define medial surfaces as Shape Representation Models (SRMs). One of the very first task of a SRM is to offer a visualization of the shape it describes. However, achieving this with a medial surface remains a challenging problem. In this paper, we propose a method to build a mesh that approximates an object only described by …
An Alternative to Medial Axis for the 3D Reconstruction of Unorganized Set of Points Using Implicit Surfaces
Rebuilding three-dimensional objects represented by a set of points is a classical problem in computer graphics. Multiple applications like medical imaging or industrial techniques require finding shape from scattered data. Therefore, the reconstruction of a set of points that represents a shape has been widely studied, depending on data source and reconstruction's objectives. This purpose of this paper is to provide an automatic reconstruction from an unorganized cloud describing an unknown shape in order to provide a solution that will allow to compute the object's volume and to deform it with constant volume. The main idea in this paper consists in filling the object's interior with an e…
INITIAL PARAMETRIC REPRESENTATION OF BLOBS
Blobs, developed by J.F. Blinn in 1982, are the implicit surfaces obtained by composition of a real numerical function and a distance function. Since, many authors (C. Murakami, H. Nishimura, G. Wyvill…) defined their own function of density, from these implicit surfaces are interesting from several points of view. In particular, their fusion makes it possible to easily obtain an implicit equation of resulting surface. However, these surfaces do not admit a parametric equation yet. In this article, we will establish the parametric equation of two blobs in fusion, defined by the function of density of C. Murakami, by using an algebraic method. Then, we will develop another method, based on …
STUDY OF VOLUME VARIATION OF IMPLICIT OBJECTS
We propose studying the variations of volume of implicit objects during an animation according to several points of view: choice of the function of density, variations of parameters such as the iso-value and the radius of influence for a given function, variations of the parameters inherent in a particular function. Modification of parameters of the function of density must be carried out with care. There are no rules concerning these variations. To avoid the non-monotonous variations, it is necessary to choose a function of density beforehand and study the intervals of variation of its parameters. A new discretization makes it possible to locate these variations for a later use in a proce…
Volumetric Reconstruction of Unorganized Set of Points with Implicit Surfaces
Many solutions exist to rebuild a three-dimensional object represented by a set of points. The purpose of our work is to provide an automatic reconstruction from an unorganized cloud, describing an unknown shape, in the aim to compute its volume. The approach employed in this paper consists in filling the object's interior with isosurfaces of potential fields and to use their fusion property in order to find the full volume and the continuous shape of the sampled object. Thus, the first step of our reconstruction is to search a correct interior for the object described by the set of points. Then, comes the positioning of implicit primitives into the cloud, deep inside of it and close to the…
Skeletizing 3D-Objects by Projections
Skeletization is used to simplify an object and to give an idea of the global shape of an object. This paper concerns the continuous domain. While many methods already exist, they are mostly applied in 2D-space. We present a new method to skeletize the polygonal approximation of a 3D-object, based on projections and 2D-skeletization from binary trees.
B-Deformable Superquadrics for 3D Reconstruction
We propose a new model for 3D representation and reconstruction. It is based on deformable superquadrics and parametric B-Splines. The 3D object deformation method uses B-Splines, instead of a Finite Element Method (FEM). This new model exhibits advantages of B-Splines It is significantly faster than deformable superquadrics without loss of generality (no assumption is made on object shapes,).