0000000000027538
AUTHOR
Sebastien Delprat
Solid-state-biased coherent detection of ultra-broadband terahertz pulses
Significant progress in nonlinear and ultrafast optics has recently opened new and exciting opportunities for terahertz (THz) science and technology, which require the development of reliable THz sources, detectors, and supporting devices. In this work, we demonstrate the first solid-state technique for the coherent detection of ultra-broadband THz pulses (0.1-10 THz), relying on the electric-field-induced second-harmonic generation in a thin layer of ultraviolet fused silica. The proposed CMOS-compatible devices, which can be realized with standard microfabrication techniques, allow us to perform ultra-broadband detection with a high dynamic range by employing probe laser powers and bias v…
Invited Article: Ultra-broadband terahertz coherent detection via a silicon nitride-based deep sub-wavelength metallic slit
We present a novel class of CMOS-compatible devices aimed to perform the solid-state-biased coherent detection of ultrashort terahertz pulses, i.e., featuring a gap-free bandwidth at least two decades-wide. Such a structure relies on a 1-µm-wide slit aperture located between two parallel aluminum pads, embedded in a 1-µm-thick layer of silicon nitride, and deposited on a quartz substrate. We show that this device can detect ultra-broadband terahertz pulses by employing unprecedented low optical probe energies of only a few tens of nanojoules. This is due to the more than one order of magnitude higher nonlinear coefficient of silicon nitride with respect to silica, the nonlinear material emp…
Affordable, ultra-broadband coherent detection of terahertz pulses via CMOS-compatible solid-state devices
We demonstrate the first fully solid-state technique for the coherent detection of ultra-broadband THz pulses (0.1-10 THz), relying on the electric-field-induced second-harmonic generation attained in integrated CMOS-compatible devices.
Silicon nitride-based deep sub-λ slit for ultra-broadband THz coherent detection
We report on the characterization of a new type of CMOS-compatible device for terahertz solid-state biased coherent detection, which relies on a 1-µm-wide metallic slit embedded in a thin film of PECVD-grown silicon nitride.