0000000000033805

AUTHOR

Zuanming Jin

showing 7 related works from this author

Resolving the Fundamentals of Magnetotransport in Metals with Ultrafast Terahertz Spectroscopy

2016

Using terahertz spectroscopy we directly resolved the fundamentals of spin-dependent conductivity in ferromagnetic metals. We quantified the differences in conduction by Fermi-level electrons with opposite spins on the sub-100 fs timescale of electron momentum scattering.

SpinsFerromagnetismCondensed matter physicsScatteringChemistryCondensed Matter::Strongly Correlated ElectronsElectronConductivityThermal conductionTerahertz spectroscopy and technologyMagnetic fieldInternational Conference on Ultrafast Phenomena
researchProduct

Probing giant magnetoresistance with THz spectroscopy

2014

We observe a giant magnetoresistance effect in CoFe/Cu-based multistack using THz time-domain spectroscopy. The magnetic field-dependent dc conductivity, electron scattering time, as well as spin-asymmetry parameter of the structure are successfully determined.

Condensed Matter::Materials ScienceMaterials scienceCondensed matter physicsScatteringTerahertz radiationGiant magnetoresistanceElectronSpectroscopyElectron scatteringTerahertz spectroscopy and technologyMagnetic field
researchProduct

Large area conductive nanoaperture arrays with strong optical resonances and spectrally flat terahertz transmission

2017

Using simple and inexpensive nanosphere lithography, we produce large, centimeter-squared sized thin golden films patterned with a hexagonal array of nanoapertures with controllable dimensions on the order of 100–300 nm, spaced by a 350–375 nm pitch distance. The optical transmission spectra of our samples are dominated by the resonant plasmonic features in the spectral range 500–700 nm, caused by the nanostructure in the film. At the same time, the transmission at terahertz (THz) radiation is as high as ∼10% and is spectrally flat. Our measurements are in agreement with finite difference time domain simulations. Such thin metal hole array films allow for very efficient injection of optical…

0301 basic medicineNanostructureMaterials sciencePhysics and Astronomy (miscellaneous)Terahertz radiationbusiness.industryNanophotonicsFinite-difference time-domain methodPhysics::Optics02 engineering and technologyPhysik (inkl. Astronomie)021001 nanoscience & nanotechnology03 medical and health sciences030104 developmental biologyNanolithographyOpticsTransmission (telecommunications)OptoelectronicsNanosphere lithography0210 nano-technologybusinessPlasmonApplied Physics Letters
researchProduct

Nano-holes vs nano-cracks in thin gold films: What causes anomalous THz transmission?

2015

Nano-structuring materials can change their properties extraordinarily, but so can defects caused by manufacturing. We study the effect of capacitive defects on terahertz transmission in golden nanomeshes, and find their influence crucial.

Materials scienceTransmission (telecommunications)business.industryTerahertz radiationCapacitive sensingNano-OptoelectronicsExtraordinary optical transmissionTransmission coefficientThin filmbusinessRefractive index
researchProduct

Spin-resolved terahertz spectroscopy

2016

As such, terahertz spectroscopy cannot resolve the spin structure of conducting particles. Here we introduce the spin sensitivity to terahertz spectroscopy by using the spin-valve configuration of the sample. As a result, the number density and momentum scattering time of conduction electrons in a ferromagnetic metal can be resolved according to their spin.

Materials scienceSpin polarizationCondensed matter physicsTerahertz radiationScatteringPhysics::Optics02 engineering and technologySpin structure021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsTerahertz spectroscopy and technology0103 physical sciencesCondensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologyTerahertz time-domain spectroscopySpectroscopySpin-½2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz)
researchProduct

Transition of laser-induced terahertz spin currents from torque- to conduction-electron-mediated transport

2022

Spin transport is crucial for future spintronic devices operating at bandwidths up to the terahertz range. In F|N thin-film stacks made of a ferromagnetic/ferrimagnetic layer F and a normal-metal layer N, spin transport is mediated by (1) spin-polarized conduction electrons and/or (2) torque between electron spins. To identify a crossover from (1) to (2), we study laser-driven spin currents in F|Pt stacks where F consists of model materials with different degrees of electrical conductivity. For the magnetic insulators yttrium iron garnet, gadolinium iron garnet (GIG) and γ−Fe2O3, identical dynamics is observed. It arises from the terahertz interfacial spin Seebeck effect (SSE), is fully det…

Condensed Matter::Materials ScienceCondensed Matter - Mesoscale and Nanoscale Physics530 PhysicsSpin caloritronicsSpin current500 Naturwissenschaften und Mathematik::530 Physik::530 PhysikMesoscale and Nanoscale Physics (cond-mat.mes-hall)MagnetismFOS: Physical sciencesCondensed Matter::Strongly Correlated ElectronsSpintronics530 Physik530
researchProduct

Accessing the fundamentals of magnetotransport in metals with terahertz probes

2015

Spin-dependent conduction in metals underlies all modern magnetic memory technologies, such as giant magnetoresistance (GMR). The charge current in ferromagnetic transition metals is carried by two non-mixing populations of sp-band Fermi-level electrons: one of majority-spin and one of minority-spin. These electrons experience spin-dependent momentum scattering with localized electrons, which originate from the spin-split d-band. The direct observation of magnetotransport under such fundamental conditions, however, requires magnetotransport measurements on the same timescale as the electron momentum scattering, which takes place in the sub-100 fs regime. Using terahertz electromagnetic prob…

PhysicsENERGY-BANDSSPECTROSCOPYCondensed matter physicsScatteringTerahertz radiationSPIN DYNAMICSGeneral Physics and AstronomyGiant magnetoresistanceRELAXATIONElectronPhysik (inkl. Astronomie)GIANT MAGNETORESISTANCEThermal conductionDEMAGNETIZATIONCondensed Matter::Mesoscopic Systems and Quantum Hall EffectTRANSPORTCondensed Matter::Materials ScienceLAYERED MAGNETIC-STRUCTURESFerromagnetismFERROMAGNETIC NICKELCondensed Matter::Strongly Correlated ElectronsSpin (physics)Electron scatteringTEMPERATURE
researchProduct