0000000000033805

AUTHOR

Zuanming Jin

Resolving the Fundamentals of Magnetotransport in Metals with Ultrafast Terahertz Spectroscopy

Using terahertz spectroscopy we directly resolved the fundamentals of spin-dependent conductivity in ferromagnetic metals. We quantified the differences in conduction by Fermi-level electrons with opposite spins on the sub-100 fs timescale of electron momentum scattering.

research product

Probing giant magnetoresistance with THz spectroscopy

We observe a giant magnetoresistance effect in CoFe/Cu-based multistack using THz time-domain spectroscopy. The magnetic field-dependent dc conductivity, electron scattering time, as well as spin-asymmetry parameter of the structure are successfully determined.

research product

Large area conductive nanoaperture arrays with strong optical resonances and spectrally flat terahertz transmission

Using simple and inexpensive nanosphere lithography, we produce large, centimeter-squared sized thin golden films patterned with a hexagonal array of nanoapertures with controllable dimensions on the order of 100–300 nm, spaced by a 350–375 nm pitch distance. The optical transmission spectra of our samples are dominated by the resonant plasmonic features in the spectral range 500–700 nm, caused by the nanostructure in the film. At the same time, the transmission at terahertz (THz) radiation is as high as ∼10% and is spectrally flat. Our measurements are in agreement with finite difference time domain simulations. Such thin metal hole array films allow for very efficient injection of optical…

research product

Nano-holes vs nano-cracks in thin gold films: What causes anomalous THz transmission?

Nano-structuring materials can change their properties extraordinarily, but so can defects caused by manufacturing. We study the effect of capacitive defects on terahertz transmission in golden nanomeshes, and find their influence crucial.

research product

Spin-resolved terahertz spectroscopy

As such, terahertz spectroscopy cannot resolve the spin structure of conducting particles. Here we introduce the spin sensitivity to terahertz spectroscopy by using the spin-valve configuration of the sample. As a result, the number density and momentum scattering time of conduction electrons in a ferromagnetic metal can be resolved according to their spin.

research product

Transition of laser-induced terahertz spin currents from torque- to conduction-electron-mediated transport

Spin transport is crucial for future spintronic devices operating at bandwidths up to the terahertz range. In F|N thin-film stacks made of a ferromagnetic/ferrimagnetic layer F and a normal-metal layer N, spin transport is mediated by (1) spin-polarized conduction electrons and/or (2) torque between electron spins. To identify a crossover from (1) to (2), we study laser-driven spin currents in F|Pt stacks where F consists of model materials with different degrees of electrical conductivity. For the magnetic insulators yttrium iron garnet, gadolinium iron garnet (GIG) and γ−Fe2O3, identical dynamics is observed. It arises from the terahertz interfacial spin Seebeck effect (SSE), is fully det…

research product

Accessing the fundamentals of magnetotransport in metals with terahertz probes

Spin-dependent conduction in metals underlies all modern magnetic memory technologies, such as giant magnetoresistance (GMR). The charge current in ferromagnetic transition metals is carried by two non-mixing populations of sp-band Fermi-level electrons: one of majority-spin and one of minority-spin. These electrons experience spin-dependent momentum scattering with localized electrons, which originate from the spin-split d-band. The direct observation of magnetotransport under such fundamental conditions, however, requires magnetotransport measurements on the same timescale as the electron momentum scattering, which takes place in the sub-100 fs regime. Using terahertz electromagnetic prob…

research product