6533b7d6fe1ef96bd1265b63

RESEARCH PRODUCT

Large area conductive nanoaperture arrays with strong optical resonances and spectrally flat terahertz transmission

Ke JiangMischa BonnH. J. ElmersDmitry TurchinovichKarina BleyZuanming JinKatharina LandfesterClemens K. WeissKeno L. KrewerZoltan Mics

subject

0301 basic medicineNanostructureMaterials sciencePhysics and Astronomy (miscellaneous)Terahertz radiationbusiness.industryNanophotonicsFinite-difference time-domain methodPhysics::Optics02 engineering and technologyPhysik (inkl. Astronomie)021001 nanoscience & nanotechnology03 medical and health sciences030104 developmental biologyNanolithographyOpticsTransmission (telecommunications)OptoelectronicsNanosphere lithography0210 nano-technologybusinessPlasmon

description

Using simple and inexpensive nanosphere lithography, we produce large, centimeter-squared sized thin golden films patterned with a hexagonal array of nanoapertures with controllable dimensions on the order of 100–300 nm, spaced by a 350–375 nm pitch distance. The optical transmission spectra of our samples are dominated by the resonant plasmonic features in the spectral range 500–700 nm, caused by the nanostructure in the film. At the same time, the transmission at terahertz (THz) radiation is as high as ∼10% and is spectrally flat. Our measurements are in agreement with finite difference time domain simulations. Such thin metal hole array films allow for very efficient injection of optical energy, while at the same time maintaining reasonably high transparency of THz waves. These structures can be used in any application combining strong optical sensitivity and THz transparency, in optical biomolecular sensing, or as optically transparent electrodes.

https://doi.org/10.1063/1.4992131