0000000000275461

AUTHOR

Keno L. Krewer

showing 4 related works from this author

Large area conductive nanoaperture arrays with strong optical resonances and spectrally flat terahertz transmission

2017

Using simple and inexpensive nanosphere lithography, we produce large, centimeter-squared sized thin golden films patterned with a hexagonal array of nanoapertures with controllable dimensions on the order of 100–300 nm, spaced by a 350–375 nm pitch distance. The optical transmission spectra of our samples are dominated by the resonant plasmonic features in the spectral range 500–700 nm, caused by the nanostructure in the film. At the same time, the transmission at terahertz (THz) radiation is as high as ∼10% and is spectrally flat. Our measurements are in agreement with finite difference time domain simulations. Such thin metal hole array films allow for very efficient injection of optical…

0301 basic medicineNanostructureMaterials sciencePhysics and Astronomy (miscellaneous)Terahertz radiationbusiness.industryNanophotonicsFinite-difference time-domain methodPhysics::Optics02 engineering and technologyPhysik (inkl. Astronomie)021001 nanoscience & nanotechnology03 medical and health sciences030104 developmental biologyNanolithographyOpticsTransmission (telecommunications)OptoelectronicsNanosphere lithography0210 nano-technologybusinessPlasmonApplied Physics Letters
researchProduct

Nano-holes vs nano-cracks in thin gold films: What causes anomalous THz transmission?

2015

Nano-structuring materials can change their properties extraordinarily, but so can defects caused by manufacturing. We study the effect of capacitive defects on terahertz transmission in golden nanomeshes, and find their influence crucial.

Materials scienceTransmission (telecommunications)business.industryTerahertz radiationCapacitive sensingNano-OptoelectronicsExtraordinary optical transmissionTransmission coefficientThin filmbusinessRefractive index
researchProduct

Thickness-dependent electron momentum relaxation times in iron films

2020

Terahertz time-domain conductivity measurements in 2 to 100 nm thick iron films resolve the femtosecond time delay between applied electric fields and resulting currents. This current response time decreases from 29 fs for thickest films to 7 fs for the thinnest films. The macroscopic response time is not strictly proportional to the conductivity. This excludes the existence of a single relaxation time universal for all conduction electrons. We must assume a distribution of microscopic momentum relaxation times. The macroscopic response time depends on average and variation of this distribution; the observed deviation between response time and conductivity scaling corresponds to the scaling…

Materials sciencePhysics and Astronomy (miscellaneous)FOS: Physical sciences02 engineering and technologyElectronConductivity01 natural sciencesElectric field0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Scaling010302 applied physicsMomentum (technical analysis)Condensed Matter - Materials ScienceCondensed matter physics[PHYS.PHYS]Physics [physics]/Physics [physics]Condensed Matter - Mesoscale and Nanoscale PhysicsRelaxation (NMR)Materials Science (cond-mat.mtrl-sci)Physik (inkl. Astronomie)021001 nanoscience & nanotechnologyThermal conductionCondensed Matter - Other Condensed MatterFemtosecond0210 nano-technologyOther Condensed Matter (cond-mat.other)
researchProduct

Robustness of plasmonic angular momentum confinement in cross resonant optical antennas

2015

Using a combination of photoemission electron microscopy and numerical simulations, we investigated the angular moment transfer in strongly enhanced optical near-fields of artificially fabricated optical antennas. The polarization dependence of the optical near-field enhancement has been measured in a maximum symmetric geometry, i.e., excitation by a normal incident planar wave. Finite-difference time-domain simulations for the realistic antenna geometries as determined by high-resolution electron microscopy reveal a very good agreement with experimental data. The agreement confirms that the geometrical asymmetries and inhomogeneities due to the nanoscale fabrication process preserve the ci…

PhysicsPhotoemission electron microscopyAngular momentumNanostructurePlanarOpticsPhysics and Astronomy (miscellaneous)business.industrybusinessPolarization (waves)PlasmonExcitationCircular polarizationApplied Physics Letters
researchProduct