0000000000034481
AUTHOR
Vicent J. Martínez
On the Multifractal Character of the Lorenz Attractor
A detailed analysis of the Lorenz attractor in connection with generalized dimensions is presented in this work. Different methods have been employed to estimate these dimensions. Two of them are of standard type. A new method, based on the minimal spanning tree of the point distribution, is extensively tested in this work. It turns out that the Lorenz attractor is very appropriate for being analyzed through this technique, which produces a very clean estimate of the extrema scaling indices α min and α max . The different methods give qualitatively the same result: The Lorenz attractor has a multifractal character
RELIABILITY OF THE DETECTION OF THE BARYON ACOUSTIC PEAK
The correlation function of the distribution of matter in the universe shows, at large scales, baryon acoustic oscillations, which were imprinted prior to recombination. This feature was first detected in the correlation function of the luminous red galaxies (LRG) of the Sloan Digital Sky Survey (SDSS). The final release (DR7) of the SDSS has been recently made available, and the useful volume is about two times bigger than in the old sample. We present here, for the first time, the redshift space correlation function of this sample at large scales together with that for one shallower, but denser volume-limited subsample drawn from the 2dF redshift survey. We test the reliability of the det…
Clustering statistics in cosmology
The main tools in cosmology for comparing theoretical models with the observations of the galaxy distribution are statistical. We will review the applications of spatial statistics to the description of the large-scale structure of the universe. Special topics discussed in this talk will be: description of the galaxy samples, selection effects and biases, correlation functions, Fourier analysis, nearest neighbor statistics, Minkowski functionals and structure statistics. Special attention will be devoted to scaling laws and the use of the lacunarity measures in the description of the cosmic texture.
A K s -band-selected catalogue of objects in the ALHAMBRA survey
The original ALHAMBRA catalogue contained over 400 000 galaxies selected using a synthetic F814W image, to the magnitude limit AB(F814W) ≈ 24.5. Given the photometric redshift depth of the ALHAMBRA multiband data (〈 z〉 = 0.86) and the approximately I-band selection, there is a noticeable bias against red objects at moderate redshift.We avoid this bias by creating a new catalogue selected in the Ks band. This newly obtained catalogue is certainly shallower in terms of apparent magnitude, but deeper in terms of redshift, with a significant population of red objects at z > 1. We select objects using the Ks band images, which reach an approximate AB magnitude limit Ks ≈ 22. We generate masks an…
On the thermodynamic origin of metabolic scaling
The origin and shape of metabolic scaling has been controversial since Kleiber found that basal metabolic rate of animals seemed to vary as a power law of their body mass with exponent 3/4, instead of 2/3, as a surface-to-volume argument predicts. The universality of exponent 3/4 -claimed in terms of the fractal properties of the nutrient network- has recently been challenged according to empirical evidence that observed a wealth of robust exponents deviating from 3/4. Here we present a conceptually simple thermodynamic framework, where the dependence of metabolic rate with body mass emerges from a trade-off between the energy dissipated as heat and the energy efficiently used by the organi…
Recent Advances in Large-scale Structure Statistics
I review the most recent redshift surveys used to probe the large scale structure of the Universe. Then I provide an overview of some of the statistical tools used to describe the galaxy distribution, trying to connect these measures with some of the statistics used in the mainstream of spatial statistics. Special topics include intensity functions, topology, and second-order statistics (2-point correlation function, K-function).
The dynamics of optically pumped molecular lasers. On its relation with the Lorenz - Haken model
In this paper we review the work on dynamical instabilities in optically pumped molecular lasers (OPLs) that has been carried out during the last 15 years. The main purpose of this review article is to survey and extend the authors' work on optically pumped molecular lasers and to place it in context with other research done in this area, without being a comprehensive review of all previous work done on this topic. In particular, we concentrate on the theoretical interpretation of the Lorenz dynamics observed in the far-infrared ammonia laser by reviewing the results obtained with different models of OPLs. New results corresponding to the dynamics obtained with the Doppler-broadened OPL mod…
Detecting filamentary pattern in the cosmic web : a catalogue of filaments for the SDSS
The main feature of the spatial large-scale galaxy distribution is its intricate network of galaxy filaments. This network is spanned by the galaxy locations that can be interpreted as a three-dimensional point distribution. The global properties of the point process can be measured by different statistical methods, which, however, do not describe directly the structure elements. The morphology of the large scale structure, on the other hand, is an important property of the galaxy distribution. Here we apply an object point process with interactions (the Bisous model) to trace and extract the filamentary network in the presently largest galaxy redshift survey, the Sloan Digital Sky Survey (…
Comparing estimators of the galaxy correlation function
We present a systematic comparison of some usual estimators of the 2--point correlation function, some of them currently used in Cosmology, others extensively employed in the field of the statistical analysis of point processes. At small scales, it is known that the correlation function follows reasonably well a power--law expression $\xi(r) \propto r^{-\gamma}$. The accurate determination of the exponent $\gamma$ (the order of the pole) depends on the estimator used for $\xi(r)$; on the other hand, its behavior at large scale gives information on a possible trend to homogeneity. We study the concept, the possible bias, the dependence on random samples and the errors of each estimator. Erro…
Multiscaling Properties of Large-Scale Structure in the Universe
The large-scale distribution of galaxies and galaxy clusters in the universe can be described in the mathematical language of multifractal sets. A particularly significant aspect of this description is that it furnishes a natural explanation for the observed differences in clustering properties of objects of different density in terms of multiscaling, the generic consequence of the application of a local density threshold to a multifractal set. The multiscaling hypothesis suggests ways of improving upon the traditional statistical measures of clustering pattern (correlation functions) and exploring further the connection between clustering pattern and dynamics.
Does the galaxy correlation length increase with the sample depth?
We have analyzed the behavior of the correlation length, $r_0$, as a function of the sample depth by extracting from the CfA2 redshift survey volume--limited samples out to increasing distances. For a fractal distribution, the value of $r_0$ would increase with the volume occupied by the sample. We find no linear increase for the CfA2 samples of the sort that would be expected if the Universe preserved its small scale fractal character out to the distances considered (60--100$\hmpc$). The results instead show a roughly constant value for $r_0$ as a function of the size of the sample, with small fluctuations due to local inhomogeneities and luminosity segregation. Thus the fractal picture ca…
High redshift galaxies in the ALHAMBRA survey
Context. Most observational results on the high redshift restframe UV-bright galaxies are based on samples pinpointed using the so called dropout technique or Ly-alpha selection. However, the availability of multifilter data allows now replacing the dropout selections by direct methods based on photometric redshifts. In this paper we present the methodology to select and study the population of high redshift galaxies in the ALHAMBRA survey data. Aims. Our aim is to develop a less biased methodology than the traditional dropout technique to study the high redshift galaxies in ALHAMBRA and other multifilter data. Thanks to the wide area ALHAMBRA covers, we especially aim at contributing in th…
Morphology of the galaxy distribution from wavelet denoising
We have developed a method based on wavelets to obtain the true underlying smooth density from a point distribution. The goal has been to reconstruct the density field in an optimal way ensuring that the morphology of the reconstructed field reflects the true underlying morphology of the point field which, as the galaxy distribution, has a genuinely multiscale structure, with near-singular behavior on sheets, filaments and hotspots. If the discrete distributions are smoothed using Gaussian filters, the morphological properties tend to be closer to those expected for a Gaussian field. The use of wavelet denoising provide us with a unique and more accurate morphological description.
Searching for the scale of homogeneity
We introduce a statistical quantity, known as the $K$ function, related to the integral of the two--point correlation function. It gives us straightforward information about the scale where clustering dominates and the scale at which homogeneity is reached. We evaluate the correlation dimension, $D_2$, as the local slope of the log--log plot of the $K$ function. We apply this statistic to several stochastic point fields, to three numerical simulations describing the distribution of clusters and finally to real galaxy redshift surveys. Four different galaxy catalogues have been analysed using this technique: the Center for Astrophysics I, the Perseus--Pisces redshift surveys (these two lying…
A Sample of Field Ellipticals
Using well-defined selection criteria applied to the LEDA galaxy catalogue we have constructed a sample of elliptical galaxies that can be taken to lie in the field. Such criteria can easily be applied to theoretical simulations for direct comparison with observations. The variation of the number of `isolated' ellipticals with selection criteria is also investigated. A preliminary study of the environment of the field ellipticals shows that, in the mean, they are surrounded by a population of dwarf galaxies, out to projected radii of at least 500 kpc, with a radial density profile of $r^{-0.6\pm 0.2}$ and a luminosity function slope of $\alpha \sim -1.8$. The results are compared and contra…
ERRATUM: “RELIABILITY OF THE DETECTION OF THE BARYON ACOUSTIC PEAK” (2009, ApJ, 696, L93)
Due to an error in applying the passive evolution to transform Mg (z = 0) magnitudes to Mg (z = 0.3), the values of the magnitude limits for the samples DR7-LRG and DR7-LRG-VL quoted in Table 1 were not correct. The corrected Table 1 is appended below. Note that although the redshift limits of the sample DR7-LRG are the same as in Eisenstein et al. (2005), the magnitude limits are therefore slightly shifted (see Table 1). Once this fact is considered, figures and results are completely unaffected. We are very grateful to Eyal Kazin for pointing out the error.
Author Correction: On the thermodynamic origin of metabolic scaling
The origin and shape of metabolic scaling has been controversial since Kleiber found that basal metabolic rate of animals seemed to vary as a power law of their body mass with exponent 3/4, instead of 2/3, as a surface-to-volume argument predicts. The universality of exponent 3/4 -claimed in terms of the fractal properties of the nutrient network- has recently been challenged according to empirical evidence that observed a wealth of robust exponents deviating from 3/4. Here we present a conceptually simple thermodynamic framework, where the dependence of metabolic rate with body mass emerges from a trade-off between the energy dissipated as heat and the energy efficiently used by the organi…
The ALHAMBRA survey: 2D analysis of the stellar populations in massive early-type galaxies atz< 0.3
Reproduced with permission from Astronomy & Astrophysics
SDSS DR7 superclusters. Morphology
We study the morphology of a set of superclusters drawn from the SDSS DR7. We calculate the luminosity density field to determine superclusters from a flux- limited sample of galaxies from SDSS DR7, and select superclusters with 300 and more galaxies for our study. The morphology of superclusters is described with the fourth Minkowski functional V3, the morphological signature (the curve in the shapefinder's K1-K2 plane) and the shape parameter (the ratio of the shapefinders K1/K2). We investigate the supercluster sample using multidimensional normal mixture modelling, and use Abell clusters to identify our superclusters with known superclusters and to study the large-scale distribution of …
The ALHAMBRA survey: B -band luminosity function of quiescent and star-forming galaxies at 0.2 ≤ z < 1 by PDF analysis
[Aims]: Our goal is to study the evolution of the B-band luminosity function (LF) since z ∼ 1 using ALHAMBRA data. [Methods]: We used the photometric redshift and the I-band selection magnitude probability distribution functions (PDFs) of those ALHAMBRA galaxies with I ≤ 24 mag to compute the posterior LF. We statistically studied quiescent and star-forming galaxies using the template information encoded in the PDFs. The LF covariance matrix in redshift - magnitude - galaxy type space was computed, including the cosmic variance. That was estimated from the intrinsic dispersion of the LF measurements in the 48 ALHAMBRA sub-fields. The uncertainty due to the photometric redshift prior is also…
Toward Understanding Rich Superclusters
We present a morphological study of the two richest superclusters from the 2dF Galaxy Redshift Survey (SCL126, the Sloan Great Wall, and SCL9, the Sculptor supercluster). We use Minkowski functionals, shapefinders, and galaxy group information to study the substructure of these superclusters as formed by different populations of galaxies. We compare the properties of grouped and isolated galaxies in the core region and in the outskirts of superclusters. The fourth Minkowski functional $V_3$ and the morphological signature $K_1$- $K_2$ show a crossover from low-density morphology (outskirts of supercluster) to high-density morphology (core of supercluster) at mass fraction $m_f \approx 0.7$.…
Lyman break and ultraviolet-selected galaxies at z ~ 1 - II. PACS 100μm/160μm FIR detections
In this work, we report the Photodetector Array Camera and Spectrometer (PACS) 100 μm/160 μm detections of a sample of 42 GALEX-selected and far-infrared (FIR)-detected Lyman break galaxies (LBGs) at z ~ 1 located in the Cosmic Evolution Survey (COSMOS) field and analyse their ultraviolet (UV) to FIR properties. The detection of these LBGs in the FIR indicates that they have a dust content high enough so that its emission can be directly detected. According to a spectral energy distribution (SED) fitting with stellar population templates to their UV-to-near-IR observed photometry, PACS-detected LBGs tend to be bigger (Reff ~ 4.1 kpc), more massive [log (M*/M⊙) ~ 10.7], dustier [Es(B - V) ~ …
NGC1600 - Cluster or Field Elliptical?
A study of the galaxy distribution in the field of the elliptical galaxy NGC1600 has been undertaken. Although this galaxy is often classified as a member of a loose group, all the neighbouring galaxies are much fainter and could be taken as satellites of NGC1600. The number density profile of galaxies in the field of this galaxy shows a decline with radius, with evidence of a background at approximately 1.3 Mpc. The density and number density profile are consistent with that found for other isolated early-type galaxies. NGC1600 appears as an extended source in X-rays, and the center of the X-ray emission seems not to coincide with the center of the galaxy. The velocity distribution of neig…
Is the Universe Fractal?
One of the key issues in cosmology is the question of whether the universe is smooth or fractal at large dimensions. The answer has a bearing on the big bang model of the origin of the universe. MartAnez discusses why recent analyses have come to opposing conclusions regarding this question and looks at how good a case can be made for large-scale smoothness of the universe.
The Sloan Great Wall. Rich clusters
We present the results of the study of the substructure and galaxy content of ten rich clusters of galaxies in three different superclusters of the Sloan Great Wall. We determine the substructure in clusters using the 'Mclust' package from the 'R' statistical environment and analyse their galaxy content. We analyse the distribution of the peculiar velocities of galaxies in clusters and calculate the peculiar velocity of the first ranked galaxy. We show that clusters in our sample have more than one component; in some clusters different components also have different galaxy content. We find that in some clusters with substructure the peculiar velocities of the first ranked galaxies are large…
A Three-Dimensional Object Point Process for Detection of Cosmic Filaments
Summary We propose to apply an object point process to delineate filaments of the large scale structure in red shift catalogues automatically. We illustrate the feasibility of the idea on an example of the recent 2dF Galaxy Redshift Survey, describe the procedure and characterize the results.
The ALHAMBRA survey: Discovery of a faint QSO at z = 5.41
[Aims]: We aim to illustrate the potentiality of the Advanced Large, Homogeneous Area, Medium-Band Redshift Astronomical (ALHAMBRA) survey to investigate the high-redshift universe through the detection of quasi stellar objects (QSOs) at redshifts higher than 5. [Methods]: We searched for QSOs candidates at high redshift by fitting an extensive library of spectral energy distributions-including active and non-active galaxy templates, as well as stars-to the photometric database of the ALHAMBRA survey (composed of 20 optical medium-band plus the 3 broad-band JHKs near-infrared filters). [Results]: Our selection over ≈1 square degree of ALHAMBRA data (∼1/4 of the total area covered by the sur…
Hausdorff dimension from the minimal spanning tree
A technique to estimate the Hausdorff dimension of strange attractors, based on the minimal spanning tree of the point distribution is extensively tested in this work. This method takes into account in some sense the infimum requirement appearing in the definition of the Hausdorff dimension. It provides accurate estimates even for a low number of data points and it is especially suited to high-dimensional systems.
The roughness of the last scattering surface
We propose an alternative analysis of the microwave background temperature anisotropy maps that is based on the study of the roughness of natural surfaces. We apply it to large angle anisotropies, such as those measured by COBE-DMR. We show that for a large signal to noise experiment, the spectral index can be determined independently of the normalization. We then analyze the 4 yr COBE map and find for a flat $\Omega=1$ universe, that the best-fitting value for the spectral index is $n = 1.15^{+0.39}_{-0.34}$ and for the amplitude $Q_{rms-PS}= 14.1^{+3.9}_{-3.5}\mu K$. For $n=1$, the best-fitting normalization is $Q_{rms-PS}|_{n=1}= 16.2^{+1.4}_{-1.3}\mu K$.
Why the Universe is not a fractal
L'etude du survey des redshifts CfA montre que la distribution des galaxies dans l'Univers obeit a une loi d'echelle sur des echelles de longueur inferieures a environ 5 h −1 Mpc. Cependant, l'Univers n'est pas bien represente par une fractale homogene sur ces echelles. La dependance de la longueur de correlation avec la profondeur des echantillons et la luminosite est etudiee. Une methode basee sur l'arbre maximal est presentee pour determiner la dimension de Hausdorff d'une distribution de points. Cette technique est ensuite appliquee au catalogue CfA
Fractals and multifractals in the description of the cosmic structure
Abstract The concepts of fractals and multifractals are applied to describe the large scale galaxy distribution. It is shown how the Universe fits the fractal geometry on small scales (several Mpc), but that there exists some cut-off where the scale invariance is broken. Even in the scaling region the cosmic structure is not a simple fractal, and the task is to introduce more complex and complete clustering descriptors. At this stage, the concept of multifractals appears to be more efficient to describe the texture of the Universe.
Measuring galaxy segregation with the mark connection function
(abridged) The clustering properties of galaxies belonging to different luminosity ranges or having different morphological types are different. These characteristics or `marks' permit to understand the galaxy catalogs that carry all this information as realizations of marked point processes. Many attempts have been presented to quantify the dependence of the clustering of galaxies on their inner properties. The present paper summarizes methods on spatial marked statistics used in cosmology to disentangle luminosity, colour or morphological segregation and introduces a new one in this context, the mark connection function. The methods used here are the partial correlation functions, includi…
The best fit for the observed galaxy Counts-in-Cell distribution function
The Sloan Digital Sky Survey (SDSS) is the first dense redshift survey encompassing a volume large enough to find the best analytic probability density function that fits the galaxy Counts-in-Cells distribution $f_V(N)$, the frequency distribution of galaxy counts in a volume $V$. Different analytic functions have been previously proposed that can account for some of the observed features of the observed frequency counts, but fail to provide an overall good fit to this important statistical descriptor of the galaxy large-scale distribution. Our goal is to find the probability density function that better fits the observed Counts-in-Cells distribution $f_V(N)$. We have made a systematic stud…
Fractal Aspects of Galaxy Clustering
In the past decade, the mathematical concept of fractal has exerted a great influence in a large variety of scientific disciplines. It is very common to find recent papers on the application of fractals to different fields in Physics, Chemistry, Biology, etc. The success of the fractal geometry in the description of many systems is due to the fact that deep insights into very simple objects show how fractal measures are more natural for their study.
Multimodality of rich clusters from the SDSS DR8 within the supercluster-void network
We study the relations between the multimodality of galaxy clusters drawn from the SDSS DR8 and the environment where they reside. As cluster environment we consider the global luminosity density field, supercluster membership, and supercluster morphology. We use 3D normal mixture modelling, the Dressler-Shectman test, and the peculiar velocity of cluster main galaxies as signatures of multimodality of clusters. We calculate the luminosity density field to study the environmental densities around clusters, and to find superclusters where clusters reside. We determine the morphology of superclusters with the Minkowski functionals and compare the properties of clusters in superclusters of dif…
The Large-Scale Structure in the Universe: From Power Laws to Acoustic Peaks
The most popular tools for analysing the large scale distribution of galaxies are second-order spatial statistics such as the two-point correlation function or its Fourier transform, the power spectrum. In this review, we explain how our knowledge of cosmic structures, encapsulated by these statistical descriptors, has evolved since their first use when applied on the early galaxy catalogues to the present generation of wide and deep redshift surveys, incorporating the most challenging discovery in the study of the galaxy distribution: the detection of Baryon Acoustic Oscillations.
The richest superclusters : I Morphology
We study the morphology of the richest superclusters from the catalogues of superclusters of galaxies in the 2dF Galaxy Redshift Survey and compare the morphology of real superclusters with model superclusters in the Millennium Simulation. We use Minkowski functionals and shapefinders to quantify the morphology of superclusters: their sizes, shapes, and clumpiness. We generate empirical models of simple geometry to understand which morphologies correspond to the supercluster shapefinders. We show that rich superclusters have elongated, filamentary shapes with high-density clumps in their core regions. The clumpiness of superclusters is determined using the fourth Minkowski functional $V_3$.…
Scaling laws in the distribution of galaxies
Research done during the previous century established our Standard Cosmological Model. There are many details still to be filled in, but few would seriously doubt the basic premise. Past surveys have revealed that the large-scale distribution of galaxies in the Universe is far from random: it is highly structured over a vast range of scales. To describe cosmic structures, we need to build mathematically quantifiable descriptions of structure. Identifying where scaling laws apply and the nature of those scaling laws is an important part of understanding which physical mechanisms have been responsible for the organization of clusters, superclusters of galaxies and the voids between them. Find…
Statistics of Galaxy Clustering
In this introductory talk we will establish connections between the statistical analysis of galaxy clustering in cosmology and recent work in mainstream spatial statistics. The lecture will review the methods of spatial statistics used by both sets of scholars, having in mind the cross-fertilizing purpose of the meeting series. Special topics will be: description of the galaxy samples, selection effects and biases, correlation functions, nearest neighbor distances, void probability functions, Fourier analysis, and structure statistics.
The ALHAMBRA survey: accurate merger fractions derived by PDF analysis of photometrically close pairs
[Aims]: Our goal is to develop and test a novel methodology to compute accurate close-pair fractions with photometric redshifts. [Methods]: We improved the currently used methodologies to estimate the merger fraction fm from photometric redshifts by (i) using the full probability distribution functions (PDFs) of the sources in redshift space; (ii) including the variation in the luminosity of the sources with z in both the sample selection and the luminosity ratio constrain; and (iii) splitting individual PDFs into red and blue spectral templates to reliably work with colour selections.We tested the performance of our new methodology with the PDFs provided by the ALHAMBRA photometric survey.…
Morphostatistical characterization of the spatial galaxy distribution through Gibbs point processes
This paper proposes a morpho-statistical characterisation of the galaxy distribution through spatial statistical modelling based on inhomogeneous Gibbs point processes. The galaxy distribution is supposed to exhibit two components. The first one is related to the major geometrical features exhibited by the observed galaxy field, here, its corresponding filamentary pattern. The second one is related to the interactions exhibited by the galaxies. Gibbs point processes are statistical models able to integrate these two aspects in a probability density, controlled by some parameters. Several such models are fitted to real observational data via the ABC Shadow algorithm. This algorithm provides …
Evolution of Balmer jump selected galaxies in the ALHAMBRA survey
Extragalactic astronomy.-- et al.
Stellar physics with the ALHAMBRA photometric system
GREAT-ESF Workshop: Stellar Atmospheres in the Gaia Era 23–24 June 2011, Vrije Universiteit Brussels, Belgium.
Joint constraints on galaxy bias and σ8 through the N-pdf of the galaxy number density
We present a full description of the N-probability density function of the galaxy number density fluctuations. This N-pdf is given in terms, on the one hand, of the cold dark matter correlations and, on the other hand, of the galaxy bias parameter. The method relies on the assumption commonly adopted that the dark matter density fluctuations follow a local non-linear transformation of the initial energy density perturbations. The N-pdf of the galaxy number density fluctuations allows for an optimal estimation of the bias parameter (e.g., via maximum-likelihood estimation, or Bayesian inference if there exists any a priori information on the bias parameter), and of those parameters defining …
Is there any scaling in the cluster distribution?
We apply fractal analysis methods to investigate the scaling properties in the Abell and ACO catalogs of rich galaxy clusters. We also discuss different technical aspects of the method when applied to data sets with small number of points as the cluster catalogs. Results are compared with simulations based on the Zel'dovich approximation. We limit our analysis to scales less than 100 $\hm$. The cluster distribution show a scale invariant multifractal behavior in a limited scale range. For the Abell catalog this range is 15--60$\hm$, while for the ACO sample it extends to smaller scales. Despite this difference in the extension of the scale--range where scale--invariant clustering takes plac…
Recovering the real-space correlation function from photometric redshift surveys
Measurements of clustering in large-scale imaging surveys that make use of photometric redshifts depend on the uncertainties in the redshift determination. We have used light-cone simulations to show how the deprojection method successfully recovers the real space correlation function when applied to mock photometric redshift surveys. We study how the errors in the redshift determination affect the quality of the recovered two-point correlation function. Considering the expected errors associated to the planned photometric redshift surveys, we conclude that this method provides information on the clustering of matter useful for the estimation of cosmological parameters that depend on the la…
The alhambra photometric system
Aparicio Villegas, Teresa et al.
Near-IR Galaxy Counts and Evolution from the Wide-Field ALHAMBRA survey
arxiv:0902.2403v1
Filaments in observed and mock galaxy catalogues
Context. The main feature of the spatial large-scale galaxy distribution is an intricate network of galaxy filaments. Although many attempts have been made to quantify this network, there is no unique and satisfactory recipe for that yet. Aims. The present paper compares the filaments in the real data and in the numerical models, to see if our best models reproduce statistically the filamentary network of galaxies. Methods. We apply an object point process with interactions (the Bisous process) to trace and describe the filamentary network both in the observed samples (the 2dFGRS catalogue) and in the numerical models that have been prepared to mimic the data.We compare the networks. Result…
Galaxy clusters and groups in the ALHAMBRA survey
Ascaso, Begoña et al.
Detection of cosmic filaments using the Candy model
We propose to apply a marked point process to automatically delineate filaments of the large-scale structure in redshift catalogues. We illustrate the feasibility of the idea on an example of simulated catalogues, describe the procedure, and characterize the results. We find the distribution of the length of the filaments, and suggest how to use this approach to obtain other statistical characteristics of filamentary networks.
Mean-field correlations in the core of rich galaxy clusters
We develop a theory for the contribution to the clustering correlation function from gravitational interactions of neighboring pairs of galaxies in clusters. This is based on the «Hypernetted Chain Equation», a self-consistent integral equation relating the correlation function to the interaction potential.
The impact from survey depth and resolution on the morphological classification of galaxies
We consistently analyse for the first time the impact of survey depth and spatial resolution on the most used morphological parameters for classifying galaxies through non-parametric methods: Abraham and Conselice-Bershady concentration indices, Gini, M20moment of light, asymmetry, and smoothness. Three different non-local data sets are used, Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) and Subaru/XMMNewton Deep Survey (SXDS, examples of deep ground-based surveys), and Cosmos Evolution Survey (COSMOS, deep space-based survey). We used a sample of 3000 local, visually classified galaxies, measuring their morphological parameters at their real redshifts (z ~ 0)…
Multimodality in galaxy clusters from SDSS DR8: substructure and velocity distribution
We search for the presence of substructure, a non-Gaussian, asymmetrical velocity distribution of galaxies, and large peculiar velocities of the main galaxies in galaxy clusters with at least 50 member galaxies, drawn from the SDSS DR8. We employ a number of 3D, 2D, and 1D tests to analyse the distribution of galaxies in clusters: 3D normal mixture modelling, the Dressler-Shectman test, the Anderson-Darling and Shapiro-Wilk tests and others. We find the peculiar velocities of the main galaxies, and use principal component analysis to characterise our results. More than 80% of the clusters in our sample have substructure according to 3D normal mixture modelling, the Dressler-Shectman (DS) te…
WAVELET ANALYSIS OF THE MULTIFRACTAL CHARACTER OF THE GALAXY DISTRIBUTION
We have determined generalized dimensions of the observed distribution of galaxies. Their different values indicate that this distribution may be described as a multifractal. In order to analyse this distribution further, we have applied local wavelet transforms. Wavelets provide us with an interesting tool to analyse the large-scale structure which can be mathematically quantified and intuitively visualized. Comparing the results of these transforms at different dilation factors helps to visualize more clearly the nearly singular nature of the distribution. This method also allows us to determine the range of the local density power laws
Shell-like structures in our cosmic neighbourhood
Signatures of the processes in the early Universe are imprinted in the cosmic web. Some of them may define shell-like structures characterised by typical scales. We search for shell-like structures in the distribution of nearby rich clusters of galaxies drawn from the SDSS DR8. We calculate the distance distributions between rich clusters of galaxies, and groups and clusters of various richness, look for the maxima in the distance distributions, and select candidates of shell-like structures. We analyse the space distribution of groups and clusters forming shell walls. We find six possible candidates of shell-like structures, in which galaxy clusters have maxima in the distance distribution…
Multifractal fits to the observed main belt asteroid distribution
Dohnanyi's (1969) theory predicts that a collisional system such as the asteroidal population of the main belt should rapidly relax to a power-law stationary size distribution of the kind $N(m)\propto m^{-\alpha}$, with $\alpha$ very close to 11/6, provided all the collisional response parameters are independent on size. The actual asteroid belt distribution at observable sizes, instead, does not exhibit such a simple fractal size distribution. We investigate in this work the possibility that the corresponding cumulative distribution may be instead fairly fitted by multifractal distributions. This multifractal behavior, in contrast with the Dohnany fractal distribution, is related to the re…
The Sloan Great Wall. Morphology and galaxy content
We present the results of the study of the morphology and galaxy content of the Sloan Great Wall (SGW). We use the luminosity density field to determine superclusters in the SGW, and the fourth Minkowski functional V_3 and the morphological signature (the K_1-K_2 shapefinders curve) to show the different morphologies of the SGW, from a single filament to a multibranching, clumpy planar system. The richest supercluster in the SGW, SCl~126 and especially its core resemble a very rich filament, while another rich supercluster in the SGW, SCl~111, resembles a "multispider" - an assembly of high density regions connected by chains of galaxies. Using Minkowski functionals we study the substructur…
THE ALHAMBRA SURVEY: EVOLUTION OF GALAXY SPECTRAL SEGREGATION
arXiv:1601.03668v1
Wavelet analysis of baryon acoustic structures in the galaxy distribution
Baryon Acoustic Oscillations (BAO) are a feature imprinted in the density field by acoustic waves travelling in the plasma of the early universe. Their fixed scale can be used as a standard ruler to study the geometry of the universe. BAO have been previously detected using correlation functions and power spectra of the galaxy distribution. In this work, we present a new method for the detection of the real-space structures associated with this feature. These baryon acoustic structures are spherical shells with a relatively small density contrast, surrounding high density central regions. We design a specific wavelet adapted to the search for shells, and exploit the physics of the process b…
The ALHAMBRA survey: Bayesian photometric redshifts with 23 bands for 3 deg2
A. Molino et al.
KIC 8462852: Will the Trojans return in 2021?
KIC 8462852 stood out among more than 100,000 stars in the Kepler catalogue because of the strange features of its light curve: a wide, asymmetric dimming taking up to 15 per cent of the light at D793 and a period of multiple, narrow dimmings happening approximately 700 days later. Several models have been proposed to account for this abnormal behaviour, most of which require either unlikely causes or a finely-tuned timing. We aim at offering a relatively natural solution, invoking only phenomena that have been previously observed, although perhaps in larger or more massive versions. We model the system using a large, ringed body whose transit produces the first dimming and a swarm of Troja…
Point field models for the galaxy point pattern modelling the singularity of the two-point correlation function
There is empirical evidence that the two-point correlation function of the galaxy distribution follows, for small scales, reasonably well a power-law expression $\xi(r)\propto r^{-\gamma}$ with $\gamma$ between 1.5 and 1.9. Nevertheless, most of the point field models suggested in the literature do not have this property. This paper presents a new class of models, which is produced by modifying point fields commonly used in cosmology to mimic the galaxy distribution, but where $\gamma=2$ is too large. The points are independently and randomly shifted, leading to the desired reduction of the value of $\gamma$.
The ALHAMBRA survey: Estimation of the clustering signal encoded in the cosmic variance
[Aims]: The relative cosmic variance (σv) is a fundamental source of uncertainty in pencil-beam surveys and, as a particular case of count-in-cell statistics, can be used to estimate the bias between galaxies and their underlying dark-matter distribution. Our goal is to test the significance of the clustering information encoded in the σv measured in the ALHAMBRA survey. [Methods]: We measure the cosmic variance of several galaxy populations selected with B-band luminosity at 0.35 ≤ z< 1.05 as the intrinsic dispersion in the number density distribution derived from the 48 ALHAMBRA subfields. We compare the observational σv with the cosmic variance of the dark matter expected from the theory…
The miniJPAS survey: a preview of the Universe in 56 colours
Full list of authors: Bonoli, S.; Marín-Franch, A.; Varela, J.; Vázquez Ramió, H.; Abramo, L. R.; Cenarro, A. J.; Dupke, R. A.; Vílchez, J. M.; Cristóbal-Hornillos, D.; González Delgado, R. M.; Hernández-Monteagudo, C.; López-Sanjuan, C.; Muniesa, D. J.; Civera, T.; Ederoclite, A.; Hernán-Caballero, A.; Marra, V.; Baqui, P. O.; Cortesi, A.; Cypriano, E. S.; Daflon, S.; de Amorim, A. L.; Díaz-García, L. A.; Diego, J. M.; Martínez-Solaeche, G.; Pérez, E.; Placco, V. M.; Prada, F.; Queiroz, C.; Alcaniz, J.; Alvarez-Candal, A.; Cepa, J.; Maroto, A. L.; Roig, F.; Siffert, B. B.; Taylor, K.; Benitez, N.; Moles, M.; Sodré, L.; Carneiro, S.; Mendes de Oliveira, C.; Abdalla, E.; Angulo, R. E.; Apari…
Lyman break and ultraviolet-selected galaxies at z ̃ 1-I. Stellar populations from the ALHAMBRA survey
We take advantage of the exceptional photometric coverage provided by the combination of GALEX data in the ultraviolet (UV) and the ALHAMBRA survey in the optical and near-infrared to analyse the physical properties of a sample of 1225 GALEX-selected Lyman break galaxies (LBGs) at 0.8 ≲ z ≲ 1.2 that are located in the COSMOS field. This is the largest sample of LBGs studied in this redshift range to date. According to a spectral energy distribution (SED) fitting with synthetic stellar population templates, we find that LBGs at z ̃ 1 are mostly young galaxies with a median age of 341 Myr and have intermediate dust attenuation, (Es(B - V)) ̃ 0.20. Owing to the selection criterion, LBGs at z ̃…
Partition function based analysis of cosmic microwave background maps
We present an alternative method to analyse cosmic microwave background (CMB) maps. We base our analysis on the study of the partition function. This function is used to examine the CMB maps, making use of the different information embedded at different scales and moments. Using the partition function in a likelihood analysis in two dimensions (Qrms-PS, n), we find the best-fitting model to the best data available at present (the COBE–DMR 4 years data set). By means of this analysis we find a maximum in the likelihood function for n=1.8-0.65+0.35 and Qrms-PS = 10-2.5+3μ K (95 per cent confidence level) in agreement with the results of other similar analyses [Smoot et al. (1 yr), Bennet et a…
SDSS DR7 superclusters. Principal component analysis
We apply the principal component analysis and Spearman's correlation test to study the properties of superclusters drawn from the SDSS DR7. We analyse possible selection effects in the supercluster catalogue, study the physical and morphological properties of superclusters, find their possible subsets, and determine scaling relations for superclusters. We show that the parameters of superclusters do not correlate with their distance. The correlations between the physical and morphological properties of superclusters are strong. Superclusters can be divided into two populations according to their total luminosity. High-luminosity superclusters form two sets, more elongated systems with the s…
Multi-scale morphology of the galaxy distribution
Many statistical methods have been proposed in the last years for analyzing the spatial distribution of galaxies. Very few of them, however, can handle properly the border effects of complex observational sample volumes. In this paper, we first show how to calculate the Minkowski Functionals (MF) taking into account these border effects. Then we present a multiscale extension of the MF which gives us more information about how the galaxies are spatially distributed. A range of examples using Gaussian random fields illustrate the results. Finally we have applied the Multiscale Minkowski Functionals (MMF) to the 2dF Galaxy Redshift Survey data. The MMF clearly indicates an evolution of morpho…
Stellar populations of galaxies in the ALHAMBRA survey up toz ∼ 1
Aims. We aim at constraining the stellar population properties of quiescent galaxies. These properties reveal how these galaxies evolved and assembled since z similar to 1 up to the present time. Methods. Combining the ALHAMBRA multi-filter photo-spectra with the fitting code for spectral energy distribution MUFFIT (MUlti-Filter FITting), we built a complete catalogue of quiescent galaxies via the dust-corrected stellar mass vs. colour diagram. This catalogue includes stellar population properties, such as age, metallicity, extinction, stellar mass, and photometric redshift, retrieved from the analysis of composited populations based on two independent sets of simple stellar population (SSP…
The ALHAMBRA survey: evolution of galaxy clustering since z∼1
We study the clustering of galaxies as function of luminosity and redshift in the range $0.35 < z < 1.25$ using data from the Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) survey. The ALHAMBRA data used in this work cover $2.38 \mathrm{deg}^2$ in 7 independent fields, after applying a detailed angular selection mask, with accurate photometric redshifts, $��_z \lesssim 0.014 (1+z)$, down to $I_{\rm AB} < 24$. Given the depth of the survey, we select samples in $B$-band luminosity down to $L^{\rm th} \simeq 0.16 L^{*}$ at $z = 0.9$. We measure the real-space clustering using the projected correlation function, accounting for photometric redshifts uncert…
A global descriptor of spatial pattern interaction in the galaxy distribution
We present the function J as a morphological descriptor for point patterns formed by the distribution of galaxies in the Universe. This function was recently introduced in the field of spatial statistics, and is based on the nearest neighbor distribution and the void probability function. The J descriptor allows to distinguish clustered (i.e. correlated) from ``regular'' (i.e. anti-correlated) point distributions. We outline the theoretical foundations of the method, perform tests with a Matern cluster process as an idealised model of galaxy clustering, and apply the descriptor to galaxies and loose groups in the Perseus-Pisces Survey. A comparison with mock-samples extracted from a mixed d…
Quasi-stellar objects in the ALHAMBRA survey
[Context]: Even the spectroscopic capabilities of today's ground and space-based observatories can not keep up with the enormous flow of detections (>10 5 deg -2) unveiled in modern cosmological surveys as: i) would be required enormous telescope time to perform the spectroscopic follow-ups and ii) spectra remain unattainable for the fainter detected population. In the past decade, the typical accuracy of photometric redshift (photo-z) determination has drastically improved. Nowdays, it has become a perfect complement to spectroscopy, closing the gap between photometric surveys and their spectroscopic follow-ups. The photo-z precision for active galactic nuclei (AGN) has always lagged behin…
The ALHAMBRA survey: reliable morphological catalogue of 22 051 early- and late-type galaxies
Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) is photometric survey designed to trace the cosmic evolution and cosmic variance. It covers a large area of ~4 deg2 in eight fields, where seven fields overlap with other surveys, allowing us to have complementary data in other wavelengths. All observations were carried out in 20 continuous, medium band (30 nm width) optical and 3 near-infrared (JHK) bands, providing the precise measurements of photometric redshifts. In addition, morphological classification of galaxies is crucial for any kind of galaxy formation and cosmic evolution studies, providing the information about star formation histories, their environme…