0000000000034520

AUTHOR

Alexander V. Kirdyanov

0000-0002-6797-4964

Tree rings and volcanic cooling

research product

Revising midlatitude summer temperatures back to A.D. 600 based on a wood density network

Annually resolved and millennium-long reconstructions of large-scale temperature variability are primarily composed of tree ring width (TRW) chronologies. Changes in ring width, however, have recently been shown to bias the ratio between low- and high-frequency signals. To overcome limitations in capturing the full spectrum of past temperature variability, we present a network of 15 maximum latewood density (MXD) chronologies distributed across the Northern Hemisphere extratropics. Independent subsets of continental-scale records consistently reveal high MXD before 1580 and after 1910, with below average values between these periods. Reconstructed extratropical summer temperatures reflect n…

research product

Ranking of tree-ring based temperature reconstructions of the past millennium

German Science Foundation [161/9-1]; National Natural Science Foundation of China [41325008]; [RNF 15-14-30011]

research product

Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD

Societal upheaval occurred across Eurasia in the sixth and seventh centuries. Tree-ring reconstructions suggest a period of pronounced cooling during this time associated with several volcanic eruptions. Climatic changes during the first half of the Common Era have been suggested to play a role in societal reorganizations in Europe1,2 and Asia3,4. In particular, the sixth century coincides with rising and falling civilizations1,2,3,4,5,6, pandemics7,8, human migration and political turmoil8,9,10,11,12,13. Our understanding of the magnitude and spatial extent as well as the possible causes and concurrences of climate change during this period is, however, still limited. Here we use tree-ring…

research product

Timber Logging in Central Siberia is the Main Source for Recent Arctic Driftwood

Abstract Recent findings indicated spruce from North America and larch from eastern Siberia to be the dominating tree species of Arctic driftwood throughout the Holocene. However, changes in source region forest and river characteristics, as well as ocean current dynamics and sea ice extent likely influence its spatiotemporal composition. Here, we present 2556 driftwood samples from Greenland, Iceland, Svalbard, and the Faroe Islands. A total of 498 out of 969 Pinus sylvestris ring width series were cross-dated at the catchment level against a network of Eurasian boreal reference chronologies. The central Siberian Yenisei and Angara Rivers account for 91% of all dated pines, with their oute…

research product

No Age Trends in Oak Stable Isotopes

research product

Scientific Merits and Analytical Challenges of Tree‐Ring Densitometry

X-ray microdensitometry on annually resolved tree-ring samples has gained an exceptional position in last-millennium paleoclimatology through the maximum latewood density (MXD) parameter, but also increasingly through other density parameters. For 50 years, X-ray based measurement techniques have been the de facto standard. However, studies report offsets in the mean levels for MXD measurements derived from different laboratories, indicating challenges of accuracy and precision. Moreover, reflected visible light-based techniques are becoming increasingly popular, and wood anatomical techniques are emerging as a potentially powerful pathway to extract density information at the highest resol…

research product

Reply to 'Limited Late Antique cooling'

research product

The influence of decision-making in tree ring-based climate reconstructions.

Tree-ring chronologies underpin the majority of annually-resolved reconstructions of Common Era climate. However, they are derived using different datasets and techniques, the ramifications of which have hitherto been little explored. Here, we report the results of a double-blind experiment that yielded 15 Northern Hemisphere summer temperature reconstructions from a common network of regional tree-ring width datasets. Taken together as an ensemble, the Common Era reconstruction mean correlates with instrumental temperatures from 1794–2016 CE at 0.79 (p < 0.001), reveals summer cooling in the years following large volcanic eruptions, and exhibits strong warming since the 1980s. Differing in…

research product

Regional coherency of boreal forest growth defines Arctic driftwood provenancing

Arctic driftwood represents a unique proxy archive at the interface of marine and terrestrial environments. Combined wood anatomical and dendrochronological analyses have been used to detect the origin of driftwood and may allow past timber floating activities, as well as past sea ice and ocean current dynamics to be reconstructed. However, the success of driftwood provenancing studies depends on the length, number, and quality of circumpolar boreal reference chronologies. Here, we introduce a Eurasian-wide high-latitude network of 286 ring width chronologies from the International Tree Ring Data Bank (ITRDB) and 160 additional sites comprising the three main boreal conifers Pinus, Larix, a…

research product

Ecological and conceptual consequences of Arctic pollution

Although the effect of pollution on forest health and decline received much attention in the 1980s, it has not been considered to explain the ‘Divergence Problem’ in dendroclimatology; a decoupling of tree growth from rising air temperatures since the 1970s. Here we use physical and biogeochemical measurements of hundreds of living and dead conifers to reconstruct the impact of heavy industrialisation around Norilsk in northern Siberia. Moreover, we develop a forward model with surface irradiance forcing to quantify long‐distance effects of anthropogenic emissions on the functioning and productivity of Siberia’s taiga. Downwind from the world’s most polluted Arctic region, tree mortality ra…

research product

Arctic aerosols and the ‘Divergence Problem’ in dendroclimatology

Considering the importance and complexity of natural (e.g., volcanic eruptions and wildfires) and anthropogenic (e.g., mining, oil and shipping industries) aerosol emissions to Arctic warming is particularly timely given the recent temperature extremes recorded at high-northern latitudes (Cohen et al., 2020; Overland and Wang, 2021). Despite our knowledge about the observed and modelled climatic effects of rising Arctic aerosol concentrations (Schmale et al., 2021), which may exhibit regional and seasonal differences and call for diverse research priorities from local to circumpolar scales, we feel that the ecological consequences of an aerosol-induced reduction in surface irradiance (i.e.,…

research product

Diverse growth trends and climate responses across Eurasia’s boreal forest

The area covered by boreal forests accounts for similar to 16% of the global and 22% of the Northern Hemisphere landmass. Changes in the productivity and functioning of this circumpolar biome not o ...

research product

Reassessing the evidence for tree-growth and inferred temperature change during the Common Era in Yamalia, northwest Siberia

AbstractThe development of research into the history of tree growth and inferred summer temperature changes in Yamalia spanning the last 2000 years is reviewed. One focus is the evolving production of tree-ring width (TRW) and tree-ring maximum-latewood density (MXD) larch (Larix sibirica) chronologies, incorporating different applications of Regional Curve Standardisation (RCS). Another focus is the comparison of independent data representing past tree growth in adjacent Yamalia areas: Yamal and Polar Urals, and the examination of the evidence for common growth behaviour at different timescales. The sample data we use are far more numerous and cover a longer time-span at Yamal compared to …

research product