0000000000034648

AUTHOR

Francesca Deganello

Synthesis and support composition effects on CH4 partial oxidation over Ni–CeLa oxides

Abstract Two series of Ni (6 wt%) catalysts supported over CeO 2 , La 2 O 3 and mixed CeO 2 –La 2 O 3 were prepared by co-precipitation and by wet-impregnation. The effect of the two Ni loading procedures on the catalyst structural properties was investigated by XRD, TPR and XPS. The catalytic behavior of the catalysts was tested in the methane partial oxidation reaction performed at 1 atm in a temperature range of 400–800 °C using dilute feed gas mixture with CH 4 /O 2  = 2 and gas hourly space velocity of 60,000 ml g −1  h −1 . Total methane combustion was observed within the 450 °C ≤  T ≤ 650 °C temperature range. Above 650 °C partial oxidation of methane started to occur, reaching at 80…

research product

Ceria-based electrolytes prepared by solution combustion synthesis: The role of fuel on the materials properties

Ce0.8Sm0.2O2 − xpowders were synthesized by solution combustion synthesis using citric acid, cellulose and sucrose as single, or intimately mixed, fuels. The powders were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, N2sorption at −196 °C, H2-temperature programmed reduction and thermogravimetric analyses. Textural properties of the powders were shaped by the peculiar employed fuel. The study of reducibility revealed that oxygen vacancies formation is mainly influenced by both parameters, specific surface area and total pore volume. The different tendency toward reduction played a key role in sintering under reducing atmosphe…

research product

Strontium and iron-doped barium cobaltite prepared by solution combustion synthesis: exploring a mixed-fuel approach for tailored intermediate temperature solid oxide fuel cell cathode materials

Ba0.5Sr0.5Co0.8Fe0.2O3-? (BSCF) powders were prepared by solution combustion synthesis using single and double fuels. The effect of the fuel mixture on the main properties of this well-known solid oxide fuel cell cathode material with high oxygen ion and electronic conduction was investigated in detail. Results showed that the fuel mixture significantly affected the area-specific resistance of the BSCF cathode materials, by controlling the oxygen deficiency and stabilizing the Co2+ oxidation state. It was demonstrated that high fuel-to-metal cations molar ratios and high reducing power of the combustion fuel mixture are mainly responsible for the decreasing of the area-specific resistance o…

research product

Phase analysis and oxygen strorage capacity of ceria-lanthana-based TWC promoters prepared by sol-gel routes

Ceria–lanthana-based promoters of three-way catalysts are synthesized by two different sol–gel routes, involving nitrate precursors. The oxygen uptake ability of these compounds is measured by O2 chemisorption. The specific surface area is determined by N2 adsorption (BET). X-ray diffraction data are analyzed by Rietveld refinement, demonstrating that lanthanum forms solid solution with CeO2; its total amount in ceria depends on the competitive formation of La–Al mixed oxides and on the synthetic method. The O2 uptake ability is essentially determined by the La content in the ceria–lanthana solid solution, while it is independent on the surface area and on the CeO2 particle size. The O2 upt…

research product

Local environment of Barium, Cerium and Yttrium in BaCe1−xYxO3−δ ceramic protonic conductors

Abstract Y-doped barium cerate protonic conductors with composition BaCe 1 −  x Y x O 3 −  δ ( x  = 0.02, 0.1, 0.2, 0.3) have been synthesized by sol–gel route, giving by X-ray diffraction tests a homogeneous crystalline phase. A commercial sample BaCe 0.8 Y 0.2 O 3 −  δ produced by combustion spray pyrolysis was also provided for comparison aim. The local structure around the cations was studied by X-ray absorption spectroscopy at the K-edges of Ba, Ce and Y. It is demonstrated that the insertion of yttrium in the site of cerium produces a remarkable local distortion of the dopant first-shell octahedral environment that affects also the next coordination shells by a static disorder increas…

research product

EXAFS study of ceria–lanthana-based TWC promoters prepared by sol–gel routes

Extended X-ray absorption fine structure (EXAFS) experiments at the Ce K- and La K-edges were performed on ceria–lanthana–alumina three-way catalysts promoters prepared by sol–gel routes, in order to investigate the effect of lanthanum doping on the ceria structure. The formation of Ce1−xLaxO2−x/2 solid solution, already observed by X-ray diffraction, was confirmed by EXAFS analysis, while no experimental evidence of a Ce–Al interaction was found. In presence of cerium and aluminum, lanthanum is involved in the formation of solid solution with CeO2 and of La–Al compounds. When the La:Al molar ratio is sufficiently high, the growth of a tridimensionally ordered LaAlO3 perovskite compound is …

research product

Erratum to “Cerium effect on the phase structure, phase stability and redox properties of Ce-doped strontium ferrates”

research product

Time-resolved X-ray powder diffraction on a three-way catalyst at the GILDA beamline

Time-resolved X-ray diffraction experiments carried out at the beamline BM08-GILDA of ESRF allowed a study of the structural modifications taking place in a Pt/ceria-zirconia catalyst while the CO oxidation reaction was in progress. The capillary tube in which the sample is stored acts effectively as a chemical microreactor that ensures homogeneity of the sample treatments and minimization of diffusion effects. During the flowing of the reactant CO/He mixture, the investigated catalyst undergoes a fast Ce(IV)-Ce(III) partial reduction that involves the release of one O atom for every two reduced Ce cations. Because Ce(III) has a larger ionic radius than Ce(IV), the structural modification p…

research product

Citrate–nitrate auto-combustion synthesis of perovskite-type nanopowders: A systematic approach

Abstract Citrate–nitrate auto-combustion synthesis is used to prepare an iron, a cobalt and a cerium-perovskite. The influence of different synthesis conditions on the combustion process, phase composition, textural and morphological properties is studied in detail by X-ray diffraction, nitrogen adsorption and scanning electron microscopy. Results show that the combustion intensity increases from iron, to cerium, to cobalt-perovskite. Conversely, the combustion intensity decreases and thus the safety and the gain of the combustion process increase by using high fuel/oxidant ratios, low pH values or combustion reactors with high heat dispersion capacity. High fuel/oxidant ratios increase par…

research product

Structural characterization of Pd-Ag and Pd-Cu bimetallic catalysts by means of EXAFS, WAXS and XPS

Bimetallic Pd-Ag and Pd-Cu pumice-supported catalysts have been synthesized following different preparation procedures with the aim of improving the selectivity and reactivity of monometallic Pd/pumice systems. The structural characterization, carried out by X-ray Diffraction, X-ray Absorption and X-ray Photoelectron Spectroscopy, allowed to investigate the importance of the preparation procedures in the alloy formation.

research product

Direct Methane Oxidation on La1-xSrxCr1-yFeyO3-δ perovskite-type oxides as Potential Anode for Intermediate Temperature Solid Oxide Fuel Cells

Abstract La1−xSrxCr1−yFeyO3−δ (x = 0, 0.1, 0.15, 0.2; y = 0, 0.3, 0.5) perovskite-type oxide powders were synthesized by solution combustion synthesis and characterized by X-ray diffraction, X-ray photoelectron spectroscopy and H2-temperature programmed reduction. Selected compositions were studied by CH4-temperature programmed reduction in the absence and in the presence of H2S. Temperature programmed oxidation and structural characterizations were performed in order to discriminate the nature of residual deposits on the catalyst surface. The study about reduction in different methane-based mixture revealed that total and partial methane oxidation occurred in the range ∼450–1000 °C indepen…

research product

Cerium effect on the phase structure, phase stability and redox properties of Ce-doped strontium ferrates

Nanostructured perovskite-type Sr1−aCeaFeO3−x, (0⩽a<0.15) powders have been prepared by citrate–nitrate smoldering auto-combustion. Their phase structure and stability, surface and morphological properties, reduction behavior and interaction with oxygen have been investigated by X-ray Powder Diffraction combined with Rietveld Analysis, 57Fe Mossbauer and X-ray Photoelectron Spectroscopies, N2-adsorption method, Temperature Programmed Reduction and Oxidation experiments. Our results reveal that citrate–nitrate auto-combustion method is effective in obtaining single phase Sr1−aCeaFeO3−x. The Sr1−aCeaFeO3−x structure is cubic only for a⩾0.06, while for a<0.06 remains tetragonal. Moreover, for …

research product

Catalytic reduction of nitrates and nitrites in water solution on pumice-supported Pd–Cu catalysts

Abstract Two series of pumice-supported palladium and palladium–copper catalysts, prepared by impregnation with different palladium and copper precursors, were tested for the hydrogenation of aqueous nitrate and nitrite solutions. Measurements were performed in a stirred tank reactor, operating in batch conditions, in buffered water solution at atmospheric pressure and at 293 K. The activities of the catalysts were calculated in terms of nitrate and/or nitrite removal. With the monometallic Pd/pumice, the reduction of nitrite is highly selective; only 0.2% of the initial nitrite content is converted to ammonium ions. The activity in terms of turn over frequency (TOF) is higher as compared t…

research product

Sustainable Recycling of Insoluble Rust Waste for the Synthesis of Iron-Containing Perovskite-Type Catalysts

Insoluble rust waste from the scraping of rusted iron-containing materials represents a cheap, eco-friendly, and available source of iron. LaFeO3 perovskite-type powders were successfully prepared by solution combustion synthesis using rust waste from an electricity transmission tower manufacturer. Solution combustion synthesis enabled introduction of this insoluble iron precursor directly into the final product, bypassing complex extraction procedures. Catalytic activity in the propylene oxidation of the waste-derived LaFeO3 with stoichiometric Fe/La ratio was almost identical to the commercial iron nitrate-derived LaFeO3 , thus demonstrating the viability of this recycling solution. The a…

research product

Local Environment of Yttrium in Y-Doped Barium Cerate Compounds

The local structure of yttrium in Y-doped BaCeO3 compounds was studied using X-ray absorption spectroscopy (XAS) at the Y K-edge. Data analysis shows that the local environment of Y3+ changes, resulting in a distorted octahedron. The structural distortion found does not depend on the dopant amount at the investigated compositions, but on the level of hydration, as clearly demonstrated by the distortion increase in the BaCe0.9Y0.1O3-ä sample after the treatment in O2/H2O. In situ measurements performed in O2/H2O flux, which show that the distortion is retained at 753 K, are also reported. The observed significative structural changes seem to point out a preferential insertion of the hydroxyl…

research product