0000000000037826

AUTHOR

Hyun-dong Chang

showing 6 related works from this author

Nitric oxide enhances Th9 cell differentiation and airway inflammation

2014

International audience; Th9 cells protect hosts against helminthic infection but also mediate allergic disease. Here we show that nitric oxide (NO) promotes Th9 cell polarization of murine and human CD4(+) T cells. NO de-represses the tumour suppressor gene p53 via nitrosylation of Mdm2. NO also increases p53-mediated IL-2 production, STAT5 phosphorylation and IRF4 expression, all essential for Th9 polarization. NO also increases the expression of TGFβR and IL-4R, pivotal to Th9 polarization. OVA-sensitized mice treated with an NO donor developed more severe airway inflammation. Transferred Th9 cells induced airway inflammation, which was exacerbated by NO and blocked by anti-IL-9 antibody.…

CD4-Positive T-LymphocytesInterleukin 2[SDV]Life Sciences [q-bio]Cellular differentiationNitric Oxide Synthase Type IIGeneral Physics and AstronomyMice TransgenicInflammationCell SeparationNitric OxideArticleGeneral Biochemistry Genetics and Molecular BiologyNitric oxideMicechemistry.chemical_compoundEosinophiliaSTAT5 Transcription FactormedicineAnimalsHumansInterleukin 9Cells CulturedInflammationMice Inbred BALB CMultidisciplinarybiologyNitrosylationInterleukin-9Cell DifferentiationGeneral Chemistryrespiratory systemFlow Cytometry3. Good healthCell biologyMice Inbred C57BLchemistryInterferon Regulatory FactorsImmunologyLeukocytes Mononuclearbiology.proteinInterleukin-2Mdm2Tumor Suppressor Protein p53medicine.symptomAntibodymedicine.drugNature Communications
researchProduct

Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)

2019

All authors: Andrea Cossarizza Hyun‐Dong Chang Andreas Radbruch Andreas Acs Dieter Adam Sabine Adam‐Klages William W. Agace Nima Aghaeepour Mübeccel Akdis Matthieu Allez Larissa Nogueira Almeida Giorgia Alvisi Graham Anderson Immanuel Andrä Francesco Annunziato Achille Anselmo Petra Bacher Cosima T. Baldari Sudipto Bari Vincenzo Barnaba Joana Barros‐Martins Luca Battistini Wolfgang Bauer Sabine Baumgart Nicole Baumgarth Dirk Baumjohann Bianka Baying Mary Bebawy Burkhard Becher Wolfgang Beisker Vladimir Benes Rudi Beyaert Alfonso Blanco Dominic A. Boardman Christian Bogdan Jessica G. Borger Giovanna Borsellino Philip E. Boulais Jolene A. Bradford Dirk Brenner Ryan R. Brinkman Anna E. S. Broo…

0301 basic medicineConsensusImmunologyConsensuCell SeparationBiologyArticleFlow cytometry03 medical and health sciences0302 clinical medicineGuidelines ; Immunology ; Flow cytometryAllergy and ImmunologymedicineCell separationImmunology and AllergyHumansguidelines; flow cytometry; immunologymedicine.diagnostic_testBIOMEDICINE AND HEALTHCARE. Basic Medical Sciences.Cell sortingFlow CytometryCell selectionData science3. Good health030104 developmental biologyPhenotypeAllergy and Immunology; Cell Separation; Consensus; Flow Cytometry; Humans; Phenotype[SDV.IMM]Life Sciences [q-bio]/ImmunologyBIOMEDICINA I ZDRAVSTVO. Temeljne medicinske znanosti.030215 immunologyHumanEuropean journal of immunology
researchProduct

Deep phenotypical characterization of human CD3\(^{+}\)CD56\(^{+}\) T cells by mass cytometry

2020

CD56\(^{+}\) T cells are a group of pro‐inflammatory CD3\(^{+}\) lymphocytes with characteristics of natural killer cells, being involved in antimicrobial immune defense. Here, we performed deep phenotypic profiling of CD3\(^{+}\)CD56\(^{+}\) cells in peripheral blood of normal human donors and individuals sensitized to birch‐pollen or/and house dust mite by high‐dimensional mass cytometry combined with manual and computational data analysis. A co‐regulation between major conventional T‐cell subsets and their respective CD3\(^{+}\)CD56\(^{+}\) cell counterparts appeared restricted to CD8\(^{+}\), MAIT, and TCRγδ\(^{+}\) T‐cell compartments. Interestingly, we find a co‐regulation of several …

0301 basic medicineCell specificImmune defenseCD3ImmunologyBiologyPhenotypeMolecular biologyPeripheral blood03 medical and health sciences030104 developmental biology0302 clinical medicineT cell subsetbiology.proteinImmunology and AllergyMass cytometryddc:610CD8030215 immunology
researchProduct

Epigenetic Control of the foxp3 Locus in Regulatory T Cells

2007

Compelling evidence suggests that the transcription factor Foxp3 acts as a master switch governing the development and function of CD4+ regulatory T cells (Tregs). However, whether transcriptional control of Foxp3 expression itself contributes to the development of a stable Treg lineage has thus far not been investigated. We here identified an evolutionarily conserved region within the foxp3 locus upstream of exon-1 possessing transcriptional activity. Bisulphite sequencing and chromatin immunoprecipitation revealed complete demethylation of CpG motifs as well as histone modifications within the conserved region in ex vivo isolated Foxp3+CD25+CD4+ Tregs, but not in naïve CD25−CD4+ T cells. …

MaleQH301-705.5Bisulfite sequencingImmunologyMolecular Sequence Datachemical and pharmacologic phenomenaCell SeparationThymus GlandBiologyT-Lymphocytes RegulatoryGeneral Biochemistry Genetics and Molecular BiologyEpigenesis GeneticMiceTranscriptional regulationAnimalsEpigeneticsBiology (General)Regulation of gene expressionMice Inbred BALB CGeneral Immunology and MicrobiologyBase SequenceGeneral NeuroscienceInterleukin-2 Receptor alpha SubunitFOXP3Homo (human)hemic and immune systemsForkhead Transcription FactorsDNA MethylationFlow CytometryMolecular biologyMus (mouse)Cell biologyIn VitroDNA demethylationGene Expression RegulationDNA methylationCpG IslandsGeneral Agricultural and Biological SciencesChromatin immunoprecipitationResearch ArticlePLoS Biology
researchProduct

IL‐10‐producing B cells are characterized by a specific methylation signature

2019

Among the family of regulatory B cells, the subset able to produce interleukin-10 (IL-10) is the most studied, yet its biology is still a matter of investigation. The DNA methylation profiling of the il-10 gene locus revealed a novel epigenetic signature characterizing murine B cells ready to respond through IL-10 synthesis: a demethylated region located 4.5 kb from the transcription starting site (TSS), that we named early IL10 regulatory region (eIL10rr). This feature allows to distinguish B cells that are immediately prone and developmentally committed to IL-10 production from those that require a persistent stimulation to exert an IL-10-mediated regulatory function. These late IL-10 pro…

0301 basic medicineChronic lymphocytic leukemiaRegulatory B cellsImmunologyB-Lymphocyte SubsetsLymphoma Mantle-CellRegulatory Sequences Nucleic AcidBiologyLymphocyte ActivationB-cell malignanciesMice03 medical and health scienceschemistry.chemical_compoundInterleukin 100302 clinical medicineTranscription (biology)Immune ToleranceTumor MicroenvironmentmedicineAnimalsHumansImmunology and AllergyB cells; B-cell malignancies; DNA methylation; epigenetics; Interleukin 10; Immunology and Allergy; ImmunologyEpigeneticsB-Lymphocytes RegulatoryB cellsB cellDNA methylationepigeneticsGene Expression ProfilingB cells; B-cell malignancies; DNA methylation; epigenetics; Interleukin 10Cell DifferentiationMethylationmedicine.diseaseLeukemia Lymphocytic Chronic B-CellImmunity HumoralInterleukin-10Cell biologyMice Inbred C57BLInterleukin 10030104 developmental biologychemistryDNA methylationB-cell malignancieFemaleepigeneticDNA030215 immunologyEuropean Journal of Immunology
researchProduct

Guidelines for the use of flow cytometry and cell sorting in immunological studies

2017

The marriage between immunology and cytometry is one of the most stable and productive in the recent history of science. A rapid search in PubMed shows that, as of July 2017, using “flow cytometry immunology” as a search term yields more than 68 000 articles, the first of which, interestingly, is not about lymphocytes. It might be stated that, after a short engagement, the exchange of the wedding rings between immunology and cytometry officially occurred when the idea to link fluorochromes to monoclonal antibodies came about. After this, recognizing different types of cells became relatively easy and feasible not only by using a simple fluorescence microscope, but also by a complex and some…

0301 basic medicineT-LymphocytesCell SeparationT cell precursors0302 clinical medicineImmunophenotypingHuman lymphopoiesis[ SDV.IMM ] Life Sciences [q-bio]/ImmunologyImmunology and AllergyNon-U.S. Gov'tImmunologic Techniquemedicine.diagnostic_testResearch Support Non-U.S. Gov'tvirus diseaseshemic and immune systemsFalse Positive ReactionCell sortingFlow Cytometrynatural killer and innate lymphoid cells differentiation3. Good healthResearch Design[SDV.IMM]Life Sciences [q-bio]/ImmunologyHumanQuality Controlmedicine.drug_classImmunologyAnimals; Cell Proliferation; Cell Separation; DNA; False Positive Reactions; Flow Cytometry; Humans; Immunophenotyping; Quality Control; RNA; Research Design; Software; T-Lymphocytes; Guidelines as Topic; Immunologic Techniques; Immunology and Allergy; Immunologychemical and pharmacologic phenomenaGuidelines as TopicComputational biologyBiologyMonoclonal antibodyResearch SupportArticleFlow cytometryImmunophenotypingN.I.H.03 medical and health sciencesImmune systemImmunologic TechniqueResearch Support N.I.H. Extramuralmedicineearly lymphoid progenitorsJournal ArticleAnimalsHumansMass cytometryFalse Positive ReactionsImmunology and Allergy; Immunology; Flow cytometryIMUNOLOGIACell ProliferationAnimalExtramuralB cell ontogenyDNA030104 developmental biologyT-LymphocyteImmunologic TechniquesRNACytometrySoftware030215 immunologyEuropean Journal of Immunology
researchProduct