0000000000038401

AUTHOR

Wolfram Jaegermann

showing 4 related works from this author

Impact of Ir modification on the durability of FeNC catalysts under start-up and shutdown cycle conditions

2022

A common problem associated with FeNC catalysts is their poor stability dominated by the carbon oxidation reaction (COR). In this work, the feasibility of stabilizing FeNC catalysts with small quantities of Ir was explored. With iridium being present, instead of COR the oxygen evolution reaction should be favored. The impact on structure and morphology was investigated by 57Fe Mössbauer spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and transmission electron microscopy. The catalytic activity and durability for the oxygen reduction reaction was evaluated by rotating ring disc electrode experiments and accelerated stress tests mimicking the start-up and shutdown cycle (SS…

Materials scienceRenewable Energy Sustainability and the EnvironmentOxygen evolutionchemistry.chemical_elementProton exchange membrane fuel cellGeneral Chemistry540RedoxCatalysissymbols.namesakechemistryX-ray photoelectron spectroscopyChemical engineeringsymbolsGeneral Materials ScienceIridiumRaman spectroscopyFaraday efficiencyJournal of Materials Chemistry A
researchProduct

Thin film growth and band lineup of In2O3 on the layered semiconductor InSe

1999

Thin films of the transparent conducting oxide In2O3 have been prepared in ultrahigh vacuum by reactive evaporation of indium. X-ray diffraction, optical, and electrical measurements were used to characterize properties of films deposited on transparent insulating mica substrates under variation of the oxygen pressure. Photoelectron spectroscopy was used to investigate in situ the interface formation between In2O3 and the layered semiconductor InSe. For thick In2O3 films a work function of φ = 4.3 eV and a surface Fermi level position of EF−EV = 3.0 eV is determined, giving an ionization potential IP = 7.3 eV and an electron affinity χ = 3.7 eV. The interface exhibits a type I band alignmen…

Materials scienceAnalytical chemistryIonisation potentialGeneral Physics and AstronomyWork functionPhotoelectron spectrasymbols.namesakeX-ray photoelectron spectroscopyIndium compounds:FÍSICA [UNESCO]Electron affinityWork functionThin filmbusiness.industryFermi levelUNESCO::FÍSICAHeterojunctionInterface statesBand structureEvaporation (deposition)X-ray diffractionElectron affinitySemiconductorVacuum depositionIndium compounds ; Vacuum deposition ; X-ray diffraction ; Photoelectron spectra ; Semiconductor-insulator boundaries ; Work function ; Fermi level ; Ionisation potential ; Electron affinity ; Interface states ; Band structureFermi levelsymbolsSemiconductor-insulator boundariesOptoelectronicsbusiness
researchProduct

Optical and photovoltaic properties of indium selenide thin films prepared by van der Waals epitaxy

2001

Indium selenide thin films have been grown on p-type gallium selenide single crystal substrates by van der Waals epitaxy. The use of two crucibles in the growth process has resulted in indium selenide films with physical properties closer to these of bulk indium selenide than those prepared by other techniques. The optical properties of the films have been studied by electroabsorption measurements. The band gap and its temperature dependence are very close to those of indium selenide single crystals. The width of the fundamental transition, even if larger than that of the pure single crystal material, decreases monotonously with temperature. Exciton peaks are not observed even at low temper…

Materials scienceBand gapExcitonIndium compounds ; III-VI semiconductors ; Semiconductor epitaxial layers ; Electroabsorption ; Excitons ; Minority carriers ; Carrier lifetimeCarrier lifetimeGeneral Physics and Astronomychemistry.chemical_elementIII-VI semiconductorschemistry.chemical_compoundIndium compounds:FÍSICA [UNESCO]SelenideThin filmMinority carriersbusiness.industrySemiconductor epitaxial layersUNESCO::FÍSICACarrier lifetimeCopper indium gallium selenide solar cellschemistryElectroabsorptionOptoelectronicsExcitonsbusinessSingle crystalIndium
researchProduct

Evidence of Band Bending Induced by Hole Trapping at MAPbI3 Perovskite / Metal Interface

2016

International audience; Electron injection by tunneling from a gold electrode and hole transport properties in polycrystalline MAPbI3 has been investigated using variable temperature experiments and numerical simulations. The presence of a large and unexpected band bending at the Au/MAPbI3 interface is revealed and attributed to the trapping of holes, which enhances the injection of electrons via tunneling. These results elucidate the role of volume and interface defects in state-of-the-art hybrid perovskite semiconductors.

Materials scienceCondensed matter physicsRenewable Energy Sustainability and the Environmentbusiness.industry02 engineering and technologyGeneral ChemistryTrappingElectron010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesSemiconductorBand bendingCondensed Matter::SuperconductivityElectrodeGeneral Materials Science[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsCrystalliteAtomic physics[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics0210 nano-technologybusinessQuantum tunnellingPerovskite (structure)
researchProduct